Author
Listed:
- Minjung Park
- Gyuyeon Na
- Soyoun Kim
- Sunyoung Moon
- HyeonJeong Cha
- Sangmi Chai
Abstract
Abnormal cryptocurrency transactions - such as mixing services, fraudulent transfers, and pump-and-dump operations -- pose escalating risks to financial integrity but remain notoriously difficult to detect due to class imbalance, temporal volatility, and complex network dependencies. Existing approaches are predominantly model-centric and post hoc, flagging anomalies only after they occur and thus offering limited preventive value. This paper introduces HyPV-LEAD (Hyperbolic Peak-Valley Lead-time Enabled Anomaly Detection), a data-driven early-warning framework that explicitly incorporates lead time into anomaly detection. Unlike prior methods, HyPV-LEAD integrates three innovations: (1) window-horizon modeling to guarantee actionable lead-time alerts, (2) Peak-Valley (PV) sampling to mitigate class imbalance while preserving temporal continuity, and (3) hyperbolic embedding to capture the hierarchical and scale-free properties of blockchain transaction networks. Empirical evaluation on large-scale Bitcoin transaction data demonstrates that HyPV-LEAD consistently outperforms state-of-the-art baselines, achieving a PR-AUC of 0.9624 with significant gains in precision and recall. Ablation studies further confirm that each component - PV sampling, hyperbolic embedding, and structural-temporal modeling - provides complementary benefits, with the full framework delivering the highest performance. By shifting anomaly detection from reactive classification to proactive early-warning, HyPV-LEAD establishes a robust foundation for real-time risk management, anti-money laundering (AML) compliance, and financial security in dynamic blockchain environments.
Suggested Citation
Minjung Park & Gyuyeon Na & Soyoun Kim & Sunyoung Moon & HyeonJeong Cha & Sangmi Chai, 2025.
"HyPV-LEAD: Proactive Early-Warning of Cryptocurrency Anomalies through Data-Driven Structural-Temporal Modeling,"
Papers
2509.03260, arXiv.org.
Handle:
RePEc:arx:papers:2509.03260
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.03260. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.