IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.01264.html
   My bibliography  Save this paper

Social Learning from Experts with Uncertain Precision

Author

Listed:
  • Georgy Lukyanov

Abstract

We study social learning from multiple experts whose precision is unknown and who care about reputation. The observer both learns a persistent state and ranks experts. In a binary baseline we characterize per-period equilibria: high types are truthful; low types distort one-sidedly with closed-form mixing around the prior. Aggregation is additive in log-likelihood ratios. Light-touch design -- evaluation windows scored by strictly proper rules or small convex deviation costs -- restores strict informativeness and delivers asymptotic efficiency under design (consistent state learning and reputation identification). A Gaussian extension yields a mimicry coefficient and linear filtering. With common shocks, GLS weights are optimal and correlation slows learning. The framework fits advisory panels, policy committees, and forecasting platforms, and yields transparent comparative statics and testable implications.

Suggested Citation

  • Georgy Lukyanov, 2025. "Social Learning from Experts with Uncertain Precision," Papers 2509.01264, arXiv.org, revised Sep 2025.
  • Handle: RePEc:arx:papers:2509.01264
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.01264
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lones Smith & Peter Sorensen, 2000. "Pathological Outcomes of Observational Learning," Econometrica, Econometric Society, vol. 68(2), pages 371-398, March.
    2. Rajiv Sethi & Muhamet Yildiz, 2016. "Communication With Unknown Perspectives," Econometrica, Econometric Society, vol. 84, pages 2029-2069, November.
    3. Bauke Visser & Otto H. Swank, 2007. "On Committees of Experts," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 337-372.
    4. Catonini, Emiliano & Stepanov, Sergey, 2023. "Reputation and information aggregation," Journal of Economic Behavior & Organization, Elsevier, vol. 208(C), pages 156-173.
    5. Catonini, Emiliano & Kurbatov, Andrey & Stepanov, Sergey, 2024. "Independent versus collective expertise," Games and Economic Behavior, Elsevier, vol. 143(C), pages 340-356.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    7. Peker, Cem & Wilkening, Tom, 2025. "Robust recalibration of aggregate probability forecasts using meta-beliefs," International Journal of Forecasting, Elsevier, vol. 41(2), pages 613-630.
    8. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    9. Balmaceda, Felipe, 2021. "Private vs. public communication: Difference of opinion and reputational concerns," Journal of Economic Theory, Elsevier, vol. 196(C).
    10. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    11. Crawford, Vincent P & Sobel, Joel, 1982. "Strategic Information Transmission," Econometrica, Econometric Society, vol. 50(6), pages 1431-1451, November.
    12. Wanxue Dong & Maytal Saar-Tsechansky & Tomer Geva, 2025. "A Machine Learning Framework for Assessing Experts’ Decision Quality," Management Science, INFORMS, vol. 71(7), pages 5696-5721, July.
    13. Krishna, Vijay & Morgan, John, 2004. "The art of conversation: eliciting information from experts through multi-stage communication," Journal of Economic Theory, Elsevier, vol. 117(2), pages 147-179, August.
    14. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgy Lukyanov & Ariza Azova, 2025. "Herding Prices: Social Learning and Dynamic Competition in Duopoly," Papers 2509.01263, arXiv.org, revised Sep 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. , & , & ,, 2014. "Dynamics of information exchange in endogenous social networks," Theoretical Economics, Econometric Society, vol. 9(1), January.
    2. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
    3. Syngjoo Choi & Edoardo Gallo & Shachar Kariv, 2015. "Networks in the laboratory," Cambridge Working Papers in Economics 1551, Faculty of Economics, University of Cambridge.
    4. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    5. Eyster, Erik & Galeotti, Andrea & Kartik, Navin & Rabin, Matthew, 2014. "Congested observational learning," Games and Economic Behavior, Elsevier, vol. 87(C), pages 519-538.
    6. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    7. Bohren, Aislinn & Hauser, Daniel, 2017. "Learning with Heterogeneous Misspecified Models: Characterization and Robustness," CEPR Discussion Papers 12036, C.E.P.R. Discussion Papers.
    8. Corazzini, Luca & Pavesi, Filippo & Petrovich, Beatrice & Stanca, Luca, 2012. "Influential listeners: An experiment on persuasion bias in social networks," European Economic Review, Elsevier, vol. 56(6), pages 1276-1288.
    9. Liangfei Qiu & Arunima Chhikara & Asoo Vakharia, 2021. "Multidimensional Observational Learning in Social Networks: Theory and Experimental Evidence," Information Systems Research, INFORMS, vol. 32(3), pages 876-894, September.
    10. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    11. Song, Yangbo, 2016. "Social learning with endogenous observation," Journal of Economic Theory, Elsevier, vol. 166(C), pages 324-333.
    12. Fernández-Duque, Mauricio, 2022. "The probability of pluralistic ignorance," Journal of Economic Theory, Elsevier, vol. 202(C).
    13. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    14. Dasaratha, Krishna & He, Kevin, 2020. "Network structure and naive sequential learning," Theoretical Economics, Econometric Society, vol. 15(2), May.
    15. Li Chen & Yiangos Papanastasiou, 2021. "Seeding the Herd: Pricing and Welfare Effects of Social Learning Manipulation," Management Science, INFORMS, vol. 67(11), pages 6734-6750, November.
    16. Ilan Lobel & Evan Sadler, 2016. "Preferences, Homophily, and Social Learning," Operations Research, INFORMS, vol. 64(3), pages 564-584, June.
    17. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    18. Larson, Nathan, 2015. "Inertia in social learning from a summary statistic," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 596-626.
    19. Peter Sorensen & Marco Ottaviani, 2000. "Herd Behavior and Investment: Comment," American Economic Review, American Economic Association, vol. 90(3), pages 695-704, June.
    20. Aislinn Bohren, 2014. "Informational Herding with Model Misspecification, Second Version," PIER Working Paper Archive 15-022, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Nov 2014.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.01264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.