Author
Listed:
- Riccardo Milocco
- Fabian Jansen
- Diego Garlaschelli
Abstract
In machine learning, graph embedding algorithms seek low-dimensional representations of the input network data, thereby allowing for downstream tasks on compressed encodings. Recently, within the framework of network renormalization, multi-scale embeddings that remain consistent under an arbitrary aggregation of nodes onto block-nodes, and consequently under an arbitrary change of resolution of the input network data, have been proposed. Here we investigate such multi-scale graph embeddings in the modified context where the input network is not entirely observable, due to data limitations or privacy constraints. This situation is typical for financial and economic networks, where connections between individual banks or firms are hidden due to confidentiality, and one has to probabilistically reconstruct the underlying network from aggregate information. We first consider state-of-the-art network reconstruction techniques based on the maximum-entropy principle, which is designed to operate optimally at a fixed resolution level. We then discuss the limitations of these methods when they are used as graph embeddings to yield predictions across different resolution levels. Finally, we propose their natural 'renormalizable' counterparts derived from the distinct principle of scale invariance, yielding consistent graph embeddings for multi-scale network reconstruction. We illustrate these methods on national economic input-output networks and on international trade networks, which can be naturally represented at multiple levels of industrial and geographic resolution, respectively.
Suggested Citation
Riccardo Milocco & Fabian Jansen & Diego Garlaschelli, 2025.
"Renormalizable Graph Embeddings For Multi-Scale Network Reconstruction,"
Papers
2508.20706, arXiv.org.
Handle:
RePEc:arx:papers:2508.20706
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.20706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.