IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.17671.html
   My bibliography  Save this paper

Consistent Opponent Modeling of Static Opponents in Imperfect-Information Games

Author

Listed:
  • Sam Ganzfried

Abstract

The goal of agents in multi-agent environments is to maximize total reward against the opposing agents that are encountered. Following a game-theoretic solution concept, such as Nash equilibrium, may obtain a strong performance in some settings; however, such approaches fail to capitalize on historical and observed data from repeated interactions against our opponents. Opponent modeling algorithms integrate machine learning techniques to exploit suboptimal opponents utilizing available data; however, the effectiveness of such approaches in imperfect-information games to date is quite limited. We show that existing opponent modeling approaches fail to satisfy a simple desirable property even against static opponents drawn from a known prior distribution; namely, they do not guarantee that the model approaches the opponent's true strategy even in the limit as the number of game iterations approaches infinity. We develop a new algorithm that is able to achieve this property and runs efficiently by solving a convex minimization problem based on the sequence-form game representation using projected gradient descent. The algorithm is guaranteed to efficiently converge to the opponent's true strategy given observations from gameplay and possibly additional historical data if it is available.

Suggested Citation

  • Sam Ganzfried, 2025. "Consistent Opponent Modeling of Static Opponents in Imperfect-Information Games," Papers 2508.17671, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2508.17671
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.17671
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.17671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.