Author
Listed:
- Hoyoung Lee
- Wonbin Ahn
- Suhwan Park
- Jaehoon Lee
- Minjae Kim
- Sungdong Yoo
- Taeyoon Lim
- Woohyung Lim
- Yongjae Lee
Abstract
Thematic investing, which aims to construct portfolios aligned with structural trends, remains a challenging endeavor due to overlapping sector boundaries and evolving market dynamics. A promising direction is to build semantic representations of investment themes from textual data. However, despite their power, general-purpose LLM embedding models are not well-suited to capture the nuanced characteristics of financial assets, since the semantic representation of investment assets may differ fundamentally from that of general financial text. To address this, we introduce THEME, a framework that fine-tunes embeddings using hierarchical contrastive learning. THEME aligns themes and their constituent stocks using their hierarchical relationship, and subsequently refines these embeddings by incorporating stock returns. This process yields representations effective for retrieving thematically aligned assets with strong return potential. Empirical results demonstrate that THEME excels in two key areas. For thematic asset retrieval, it significantly outperforms leading large language models. Furthermore, its constructed portfolios demonstrate compelling performance. By jointly modeling thematic relationships from text and market dynamics from returns, THEME generates stock embeddings specifically tailored for a wide range of practical investment applications.
Suggested Citation
Hoyoung Lee & Wonbin Ahn & Suhwan Park & Jaehoon Lee & Minjae Kim & Sungdong Yoo & Taeyoon Lim & Woohyung Lim & Yongjae Lee, 2025.
"THEME: Enhancing Thematic Investing with Semantic Stock Representations and Temporal Dynamics,"
Papers
2508.16936, arXiv.org, revised Aug 2025.
Handle:
RePEc:arx:papers:2508.16936
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.16936. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.