IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.12688.html
   My bibliography  Save this paper

Bayesian Double Machine Learning for Causal Inference

Author

Listed:
  • Francis J. DiTraglia
  • Laura Liu

Abstract

This paper proposes a simple, novel, and fully-Bayesian approach for causal inference in partially linear models with high-dimensional control variables. Off-the-shelf machine learning methods can introduce biases in the causal parameter known as regularization-induced confounding. To address this, we propose a Bayesian Double Machine Learning (BDML) method, which modifies a standard Bayesian multivariate regression model and recovers the causal effect of interest from the reduced-form covariance matrix. Our BDML is related to the burgeoning frequentist literature on DML while addressing its limitations in finite-sample inference. Moreover, the BDML is based on a fully generative probability model in the DML context, adhering to the likelihood principle. We show that in high dimensional setups the naive estimator implicitly assumes no selection on observables--unlike our BDML. The BDML exhibits lower asymptotic bias and achieves asymptotic normality and semiparametric efficiency as established by a Bernstein-von Mises theorem, thereby ensuring robustness to misspecification. In simulations, our BDML achieves lower RMSE, better frequentist coverage, and shorter confidence interval width than alternatives from the literature, both Bayesian and frequentist.

Suggested Citation

  • Francis J. DiTraglia & Laura Liu, 2025. "Bayesian Double Machine Learning for Causal Inference," Papers 2508.12688, arXiv.org.
  • Handle: RePEc:arx:papers:2508.12688
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.12688
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.12688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.