IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.02685.html
   My bibliography  Save this paper

Benchmarking Classical and Quantum Models for DeFi Yield Prediction on Curve Finance

Author

Listed:
  • Chi-Sheng Chen
  • Aidan Hung-Wen Tsai

Abstract

The rise of decentralized finance (DeFi) has created a growing demand for accurate yield and performance forecasting to guide liquidity allocation strategies. In this study, we benchmark six models, XGBoost, Random Forest, LSTM, Transformer, quantum neural networks (QNN), and quantum support vector machines with quantum feature maps (QSVM-QNN), on one year of historical data from 28 Curve Finance pools. We evaluate model performance on test MAE, RMSE, and directional accuracy. Our results show that classical ensemble models, particularly XGBoost and Random Forest, consistently outperform both deep learning and quantum models. XGBoost achieves the highest directional accuracy (71.57%) with a test MAE of 1.80, while Random Forest attains the lowest test MAE of 1.77 and 71.36% accuracy. In contrast, quantum models underperform with directional accuracy below 50% and higher errors, highlighting current limitations in applying quantum machine learning to real-world DeFi time series data. This work offers a reproducible benchmark and practical insights into model suitability for DeFi applications, emphasizing the robustness of classical methods over emerging quantum approaches in this domain.

Suggested Citation

  • Chi-Sheng Chen & Aidan Hung-Wen Tsai, 2025. "Benchmarking Classical and Quantum Models for DeFi Yield Prediction on Curve Finance," Papers 2508.02685, arXiv.org.
  • Handle: RePEc:arx:papers:2508.02685
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.02685
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.02685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.