IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.23138.html
   My bibliography  Save this paper

Is Causality Necessary for Efficient Portfolios? A Computational Perspective on Predictive Validity and Model Misspecification

Author

Listed:
  • Alejandro Rodriguez Dominguez

Abstract

A recent line of research has argued that causal factor models are necessary for portfolio optimization, claiming that structurally misspecified models inevitably produce inverted signals and nonviable frontiers. This paper challenges that view. We show, through theoretical analysis, simulation counterexamples, and empirical validation, that predictive models can remain operationally valid even when structurally incorrect. Our contributions are fourfold. First, we distinguish between directional agreement, ranking, and calibration, proving that sign alignment alone does not ensure efficiency when signals are mis-scaled. Second, we establish that structurally misspecified signals can still yield convex and viable efficient frontiers provided they maintain directional alignment with true returns. Third, we derive and empirically confirm a quantitative scaling law that shows how Sharpe ratios contract smoothly with declining alignment, thereby clarifying the role of calibration within the efficient set. Fourth, we validate these results on real financial data, demonstrating that predictive signals, despite structural imperfections, can support coherent frontiers. These findings refine the debate on causality in portfolio modeling. While causal inference remains valuable for interpretability and risk attribution, it is not a prerequisite for optimization efficiency. Ultimately, what matters is the directional fidelity and calibration of predictive signals in relation to their intended use in robust portfolio construction.

Suggested Citation

  • Alejandro Rodriguez Dominguez, 2025. "Is Causality Necessary for Efficient Portfolios? A Computational Perspective on Predictive Validity and Model Misspecification," Papers 2507.23138, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2507.23138
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.23138
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.23138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.