IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.19039.html
   My bibliography  Save this paper

Autocallable Options Pricing with Integration-Based Exponential Amplitude Loading

Author

Listed:
  • Francesca Cibrario
  • Ron Cohen
  • Emanuele Dri
  • Christian Mattia
  • Or Samimi Golan
  • Tamuz Danzig
  • Giacomo Ranieri
  • Hanan Rosemarin
  • Davide Corbelletto
  • Amir Naveh
  • Bartolomeo Montrucchio

Abstract

We present a comprehensive quantum algorithm tailored for pricing autocallable options, offering a full implementation and experimental validation. Our experiments include simulations conducted on high-performance computing (HPC) hardware, along with an empirical analysis of convergence to the classically estimated value. Our key innovation is an improved integration-based exponential amplitude loading technique that reduces circuit depth compared to state-of-the-art approaches. A detailed complexity analysis in a relevant setting shows an approximately 50x reduction in T-depth for the payoff component relative to previous methods. These contributions represent a step toward more efficient quantum approaches to pricing complex financial derivatives.

Suggested Citation

  • Francesca Cibrario & Ron Cohen & Emanuele Dri & Christian Mattia & Or Samimi Golan & Tamuz Danzig & Giacomo Ranieri & Hanan Rosemarin & Davide Corbelletto & Amir Naveh & Bartolomeo Montrucchio, 2025. "Autocallable Options Pricing with Integration-Based Exponential Amplitude Loading," Papers 2507.19039, arXiv.org.
  • Handle: RePEc:arx:papers:2507.19039
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.19039
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shouvanik Chakrabarti & Rajiv Krishnakumar & Guglielmo Mazzola & Nikitas Stamatopoulos & Stefan Woerner & William J. Zeng, 2020. "A Threshold for Quantum Advantage in Derivative Pricing," Papers 2012.03819, arXiv.org, revised May 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abha Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2023. "From Portfolio Optimization to Quantum Blockchain and Security: A Systematic Review of Quantum Computing in Finance," Papers 2307.01155, arXiv.org.
    2. Koichi Miyamoto & Kenji Kubo, 2021. "Pricing multi-asset derivatives by finite difference method on a quantum computer," Papers 2109.12896, arXiv.org.
    3. Mark-Oliver Wolf & Tom Ewen & Ivica Turkalj, 2023. "Quantum Architecture Search for Quantum Monte Carlo Integration via Conditional Parameterized Circuits with Application to Finance," Papers 2304.08793, arXiv.org, revised Sep 2023.
    4. Roman Rietsche & Christian Dremel & Samuel Bosch & Léa Steinacker & Miriam Meckel & Jan-Marco Leimeister, 2022. "Quantum computing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2525-2536, December.
    5. Jianjun Chen & Yongming Li & Ariel Neufeld, 2023. "Quantum Monte Carlo algorithm for solving Black-Scholes PDEs for high-dimensional option pricing in finance and its complexity analysis," Papers 2301.09241, arXiv.org, revised May 2025.
    6. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "A novel approach for quantum financial simulation and quantum state preparation," Papers 2308.01844, arXiv.org, revised Apr 2024.
    7. Francesca Cibrario & Or Samimi Golan & Giacomo Ranieri & Emanuele Dri & Mattia Ippoliti & Ron Cohen & Christian Mattia & Bartolomeo Montrucchio & Amir Naveh & Davide Corbelletto, 2024. "Quantum Amplitude Loading for Rainbow Options Pricing," Papers 2402.05574, arXiv.org, revised Oct 2024.
    8. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    9. Jo~ao F. Doriguello & Alessandro Luongo & Jinge Bao & Patrick Rebentrost & Miklos Santha, 2021. "Quantum algorithm for stochastic optimal stopping problems with applications in finance," Papers 2111.15332, arXiv.org, revised Jul 2023.
    10. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    11. Vladimir Skavysh & Sofia Priazhkina & Diego Guala & Thomas Bromley, 2022. "Quantum Monte Carlo for Economics: Stress Testing and Macroeconomic Deep Learning," Staff Working Papers 22-29, Bank of Canada.
    12. Davide Veronelli & Francesca Cibrario & Emanuele Dri & Valeria Zaffaroni & Giacomo Ranieri & Davide Corbelletto & Bartolomeo Montrucchio, 2025. "Implementing Credit Risk Analysis with Quantum Singular Value Transformation," Papers 2507.19206, arXiv.org.
    13. Abha Satyavan Naik & Esra Yeniaras & Gerhard Hellstern & Grishma Prasad & Sanjay Kumar Lalta Prasad Vishwakarma, 2025. "From portfolio optimization to quantum blockchain and security: a systematic review of quantum computing in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-67, December.
    14. Yen-Jui Chang & Wei-Ting Wang & Hao-Yuan Chen & Shih-Wei Liao & Ching-Ray Chang, 2023. "Preparing random state for quantum financing with quantum walks," Papers 2302.12500, arXiv.org, revised Mar 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.19039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.