Author
Abstract
In statistical modeling, prediction and explanation are two fundamental objectives. When the primary goal is forecasting, it is important to account for the inherent uncertainty associated with estimating unknown outcomes. Traditionally, confidence intervals constructed using standard deviations have served as a formal means to quantify this uncertainty and evaluate the closeness of predicted values to their true counterparts. This approach reflects an implicit aim to capture the behavioral similarity between observed and estimated values. However, advances in similarity based approaches present promising alternatives to conventional variance based techniques, particularly in contexts characterized by large datasets or a high number of explanatory variables. This study aims to investigate which methods either traditional or similarity based are capable of producing narrower confidence intervals under comparable conditions, thereby offering more precise and informative intervals. The dataset utilized in this study consists of U.S. mega cap companies, comprising 42 firms. Due to the high number of features, interdependencies among predictors are common, therefore, Ridge Regression is applied to address this issue. The research findings indicate that variance based method and LCSS exhibit the highest coverage among the analyzed methods, although they produce broader intervals. Conversely, DTW, Hausdorff, and TWED deliver narrower intervals, positioning them as the most accurate methods, despite their medium coverage rates. Ultimately, the trade off between interval width and coverage underscores the necessity for context aware decision making when selecting similarity based methods for confidence interval estimation in time series analysis.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.16655. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.