IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.15771.html
   My bibliography  Save this paper

Left Leaning Models: How AI Evaluates Economic Policy?

Author

Listed:
  • Maxim Chupilkin

Abstract

Would artificial intelligence (AI) cut interest rates or adopt conservative monetary policy? Would it deregulate or opt for a more controlled economy? As AI use by economic policymakers, academics, and market participants grows exponentially, it is becoming critical to understand AI preferences over economic policy. However, these preferences are not yet systematically evaluated and remain a black box. This paper makes a conjoint experiment on leading large language models (LLMs) from OpenAI, Anthropic, and Google, asking them to evaluate economic policy under multi-factor constraints. The results are remarkably consistent across models: most LLMs exhibit a strong preference for high growth, low unemployment, and low inequality over traditional macroeconomic concerns such as low inflation and low public debt. Scenario-specific experiments show that LLMs are sensitive to context but still display strong preferences for low unemployment and low inequality even in monetary-policy settings. Numerical sensitivity tests reveal intuitive responses to quantitative changes but also uncover non-linear patterns such as loss aversion.

Suggested Citation

  • Maxim Chupilkin, 2025. "Left Leaning Models: How AI Evaluates Economic Policy?," Papers 2507.15771, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2507.15771
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.15771
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.15771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.