IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.14470.html
   My bibliography  Save this paper

Approximate Revenue Maximization for Diffusion Auctions

Author

Listed:
  • Yifan Huang
  • Dong Hao
  • Zhiyi Fan
  • Yuhang Guo
  • Bin Li

Abstract

Reserve prices are widely used in practice. The problem of designing revenue-optimal auctions based on reserve price has drawn much attention in the auction design community. Although they have been extensively studied, most developments rely on the significant assumption that the target audience of the sale is directly reachable by the auctioneer, while a large portion of bidders in the economic network unaware of the sale are omitted. This work follows the diffusion auction design, which aims to extend the target audience of optimal auction theory to all entities in economic networks. We investigate the design of simple and provably near-optimal network auctions via reserve price. Using Bayesian approximation analysis, we provide a simple and explicit form of the reserve price function tailored to the most representative network auction. We aim to balance setting a sufficiently high reserve price to induce high revenue in a successful sale, and attracting more buyers from the network to increase the probability of a successful sale. This reserve price function preserves incentive compatibility for network auctions, allowing the seller to extract additional revenue beyond that achieved by the Myerson optimal auction. Specifically, if the seller has $\rho$ direct neighbours in a network of size $n$, this reserve price guarantees a $1-{1 \over \rho}$ approximation to the theoretical upper bound, i.e., the maximum possible revenue from any network of size $n$. This result holds for any size and any structure of the networked market.

Suggested Citation

  • Yifan Huang & Dong Hao & Zhiyi Fan & Yuhang Guo & Bin Li, 2025. "Approximate Revenue Maximization for Diffusion Auctions," Papers 2507.14470, arXiv.org.
  • Handle: RePEc:arx:papers:2507.14470
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.14470
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.14470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.