Author
Listed:
- Pouriya Khalilian
- Amirhossein N. Golestani
- Mohammad Eslamifar
- Mostafa T. Firouzjaee
- Javad T. Firouzjaee
Abstract
Financial markets are dynamic, interconnected systems where local shocks can trigger widespread instability, challenging portfolio managers and policymakers. Traditional correlation analysis often miss the directionality and temporal dynamics of information flow. To address this, we present a unified framework integrating Transfer Entropy (TE) and the N-dimensional Kramers-Moyal (KM) expansion to map static and time-resolved coupling among four major indices: Nasdaq Composite (^IXIC), WTI crude oil (WTI), gold (GC=F), and the US Dollar Index (DX-Y.NYB). TE captures directional information flow. KM models non-linear stochastic dynamics, revealing interactions often overlooked by linear methods. Using daily data from August 11, 2014, to September 8, 2024, we compute returns, confirm non-stationary using a conduct sliding-window TE and KM analyses. We find that during the COVID-19 pandemic (March-June 2020) and the Russia-Ukraine crisis (Feb-Apr 2022), average TE increases by 35% and 28%, respectively, indicating heightened directional flow. Drift coefficients highlight gold-dollar interactions as a persistent safe-haven channel, while oil-equity linkages show regime shifts, weakening under stress and rebounding quickly. Our results expose the shortcomings of linear measures and underscore the value of combining information-theoretic and stochastic drift methods. This approach offers actionable insights for adaptive hedging and informs macro-prudential policy by revealing the evolving architecture of systemic risk.
Suggested Citation
Pouriya Khalilian & Amirhossein N. Golestani & Mohammad Eslamifar & Mostafa T. Firouzjaee & Javad T. Firouzjaee, 2025.
"Mapping Crisis-Driven Market Dynamics: A Transfer Entropy and Kramers-Moyal Approach to Financial Networks,"
Papers
2507.09554, arXiv.org.
Handle:
RePEc:arx:papers:2507.09554
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09554. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.