IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.09554.html
   My bibliography  Save this paper

Mapping Crisis-Driven Market Dynamics: A Transfer Entropy and Kramers-Moyal Approach to Financial Networks

Author

Listed:
  • Pouriya Khalilian
  • Amirhossein N. Golestani
  • Mohammad Eslamifar
  • Mostafa T. Firouzjaee
  • Javad T. Firouzjaee

Abstract

Financial markets are dynamic, interconnected systems where local shocks can trigger widespread instability, challenging portfolio managers and policymakers. Traditional correlation analysis often miss the directionality and temporal dynamics of information flow. To address this, we present a unified framework integrating Transfer Entropy (TE) and the N-dimensional Kramers-Moyal (KM) expansion to map static and time-resolved coupling among four major indices: Nasdaq Composite (^IXIC), WTI crude oil (WTI), gold (GC=F), and the US Dollar Index (DX-Y.NYB). TE captures directional information flow. KM models non-linear stochastic dynamics, revealing interactions often overlooked by linear methods. Using daily data from August 11, 2014, to September 8, 2024, we compute returns, confirm non-stationary using a conduct sliding-window TE and KM analyses. We find that during the COVID-19 pandemic (March-June 2020) and the Russia-Ukraine crisis (Feb-Apr 2022), average TE increases by 35% and 28%, respectively, indicating heightened directional flow. Drift coefficients highlight gold-dollar interactions as a persistent safe-haven channel, while oil-equity linkages show regime shifts, weakening under stress and rebounding quickly. Our results expose the shortcomings of linear measures and underscore the value of combining information-theoretic and stochastic drift methods. This approach offers actionable insights for adaptive hedging and informs macro-prudential policy by revealing the evolving architecture of systemic risk.

Suggested Citation

  • Pouriya Khalilian & Amirhossein N. Golestani & Mohammad Eslamifar & Mostafa T. Firouzjaee & Javad T. Firouzjaee, 2025. "Mapping Crisis-Driven Market Dynamics: A Transfer Entropy and Kramers-Moyal Approach to Financial Networks," Papers 2507.09554, arXiv.org.
  • Handle: RePEc:arx:papers:2507.09554
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.09554
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    2. Kwon, Okyu & Yang, Jae-Suk, 2008. "Information flow between composite stock index and individual stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2851-2856.
    3. Raddant, Matthias & Kenett, Dror Y., 2021. "Interconnectedness in the global financial market," Journal of International Money and Finance, Elsevier, vol. 110(C).
    4. Greg Tkacz, 2007. "Gold Prices and Inflation," Staff Working Papers 07-35, Bank of Canada.
    5. Baur, Dirk G. & McDermott, Thomas K., 2010. "Is gold a safe haven? International evidence," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1886-1898, August.
    6. Sabeeh Ullah, 2023. "Impact of COVID-19 Pandemic on Financial Markets: a Global Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(2), pages 982-1003, June.
    7. Cencheng Shen & Carey E. Priebe & Joshua T. Vogelstein, 2020. "From Distance Correlation to Multiscale Graph Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 280-291, January.
    8. Masafumi Oizumi & Shun-ichi Amari & Toru Yanagawa & Naotaka Fujii & Naotsugu Tsuchiya, 2016. "Measuring Integrated Information from the Decoding Perspective," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-18, January.
    9. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    10. Golub, Stephen S, 1983. "Oil Prices and Exchange Rates," Economic Journal, Royal Economic Society, vol. 93(371), pages 576-593, September.
    11. Sharma, Amalesh & Adhikary, Anirban & Borah, Sourav Bikash, 2020. "Covid-19′s impact on supply chain decisions: Strategic insights from NASDAQ 100 firms using Twitter data," Journal of Business Research, Elsevier, vol. 117(C), pages 443-449.
    12. Thomas Kau^e Dal'Maso Peron & Francisco Aparecido Rodrigues, 2011. "Collective behavior in financial market," Papers 1109.1167, arXiv.org.
    13. Imlak Shaikh, 2022. "Impact of COVID-19 pandemic on the energy markets," Economic Change and Restructuring, Springer, vol. 55(1), pages 433-484, February.
    14. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    15. Nicola, Giancarlo & Cerchiello, Paola & Aste, Tomaso, 2020. "Information network modeling for U.S. banking systemic risk," LSE Research Online Documents on Economics 107563, London School of Economics and Political Science, LSE Library.
    16. Mongi Arfaoui & Aymen Ben Rejeb, 2017. "Oil, gold, US dollar and stock market interdependencies: a global analytical insight," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 26(3), pages 278-293, October.
    17. Anthony Nyangarika & Alexey Mikhaylov & Ulf Henning Richter, 2019. "Oil Price Factors: Forecasting on the Base of Modified Auto-regressive Integrated Moving Average Model," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 149-159.
    18. Okyu Kwon & Jae-Suk Yang, 2008. "Information flow between stock indices," Papers 0802.1747, arXiv.org.
    19. Dimpfl, Thomas & Peter, Franziska J., 2019. "Group transfer entropy with an application to cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 543-551.
    20. Robert Engle & Clive Granger, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    21. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    22. Salisu, Afees A. & Isah, Kazeem O., 2017. "Revisiting the oil price and stock market nexus: A nonlinear Panel ARDL approach," Economic Modelling, Elsevier, vol. 66(C), pages 258-271.
    23. Guan, Lu & Zhang, Wei-Wei & Ahmad, Ferhana & Naqvi, Bushra, 2021. "The volatility of natural resource prices and its impact on the economic growth for natural resource-dependent economies: A comparison of oil and gold dependent economies," Resources Policy, Elsevier, vol. 72(C).
    24. Ellul, Andrew & Shin, Hyun Song & Tonks, Ian, 2005. "Opening and Closing the Market: Evidence from the London Stock Exchange," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(4), pages 779-801, December.
    25. Oloko, Tirimisiyu F. & Ogbonna, Ahamuefula E. & Adedeji, Abdulfatai A. & Lakhani, Noman, 2021. "Fractional cointegration between gold price and inflation rate: Implication for inflation rate persistence," Resources Policy, Elsevier, vol. 74(C).
    26. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    27. Yong Kheng Goh & Haslifah M Hasim & Chris G Antonopoulos, 2018. "Inference of financial networks using the normalised mutual information rate," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    28. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    29. Ruth Heller & Yair Heller & Malka Gorfine, 2013. "A consistent multivariate test of association based on ranks of distances," Biometrika, Biometrika Trust, vol. 100(2), pages 503-510.
    30. K. Ivanova & M. Ausloos & H. Takayasu, 2003. "Deterministic and stochastic influences on Japan and US stock and foreign exchange markets. A Fokker-Planck approach," Papers cond-mat/0301268, arXiv.org.
    31. Pagano, Michael S. & Peng, Lin & Schwartz, Robert A., 2013. "A call auction's impact on price formation and order routing: Evidence from the NASDAQ stock market," Journal of Financial Markets, Elsevier, vol. 16(2), pages 331-361.
    32. Javad T. Firouzjaee & Pouriya Khaliliyan, 2022. "Machine learning model to project the impact of Ukraine crisis," Papers 2203.01738, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Moyang & Wong, Wing-Keung & Wisetsri, Worakamol & Mabrouk, Fatma & Muda, Iskandar & Li, Zeyun & Hassan, Marria, 2023. "Do oil, gold and metallic price volatilities prove gold as a safe haven during COVID-19 pandemic? Novel evidence from COVID-19 data," Resources Policy, Elsevier, vol. 80(C).
    2. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    3. Aye, Goodness C. & Chang, Tsangyao & Gupta, Rangan, 2016. "Is gold an inflation-hedge? Evidence from an interrupted Markov-switching cointegration model," Resources Policy, Elsevier, vol. 48(C), pages 77-84.
    4. Bahmani-Oskooee, Mohsen & Ghodsi, Seyed Hesam & Hadzic, Muris, 2020. "Asymmetric causality between stock returns and usual hedges: An industry-level analysis," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    5. Beckmann, Joscha & Czudaj, Robert, 2013. "Gold as an inflation hedge in a time-varying coefficient framework," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 208-222.
    6. Abdulrazak Nur Mohamed & Idiris Sid Ali Mohamed, 2023. "Precious Metals and Oil Price Dynamics," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 119-128, November.
    7. Lucey, Brian M. & Sharma, Susan Sunila & Vigne, Samuel A., 2017. "Gold and inflation(s) – A time-varying relationship," Economic Modelling, Elsevier, vol. 67(C), pages 88-101.
    8. Golitsis, Petros & Gkasis, Pavlos & Bellos, Sotirios K., 2022. "Dynamic spillovers and linkages between gold, crude oil, S&P 500, and other economic and financial variables. Evidence from the USA," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    9. Tanin, Tauhidul Islam & Sarker, Ashutosh & Hammoudeh, Shawkat & Shahbaz, Muhammad, 2021. "Do volatility indices diminish gold's appeal as a safe haven to investors before and during the COVID-19 pandemic?," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 214-235.
    10. Mohd Ziaur Rehman & Shabeer Khan & Ghulam Abbas & Mohammed Alhashim, 2023. "Novel COVID-19 Outbreak and Global Uncertainty in the Top-10 Affected Countries: Evidence from Wavelet Coherence Approach," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    11. Alqahtani, Abdullah & Klein, Tony, 2021. "Oil price changes, uncertainty, and geopolitical risks: On the resilience of GCC countries to global tensions," Energy, Elsevier, vol. 236(C).
    12. Le, Trung Hai & Do, Hung Xuan & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Covid-19 pandemic and tail-dependency networks of financial assets," Finance Research Letters, Elsevier, vol. 38(C).
    13. Angelini, Eliana & Foglia, Matteo & Ortolano, Alessandra & Leone, Maria, 2018. "The “Donald” and the market: Is there a cointegration?," Research in International Business and Finance, Elsevier, vol. 45(C), pages 30-37.
    14. Mongi Arfaoui & Aymen Ben Rejeb, 2017. "Oil, gold, US dollar and stock market interdependencies: a global analytical insight," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 26(3), pages 278-293, October.
    15. Akhtaruzzaman, Md & Boubaker, Sabri & Lucey, Brian M. & Sensoy, Ahmet, 2021. "Is gold a hedge or a safe-haven asset in the COVID–19 crisis?," Economic Modelling, Elsevier, vol. 102(C).
    16. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    17. Kausik Gangopadhyay & Abhishek Jangir & Rudra Sensarma, 2014. "Forecasting the price of gold: An error correction approach," Working papers 155, Indian Institute of Management Kozhikode.
    18. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    19. Esparcia, Carlos & Jareño, Francisco & Umar, Zaghum, 2022. "Revisiting the safe haven role of Gold across time and frequencies during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    20. Tanin, Tauhidul Islam & Sarker, Ashutosh & Brooks, Robert & Do, Hung Xuan, 2022. "Does oil impact gold during COVID-19 and three other recent crises?," Energy Economics, Elsevier, vol. 108(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.09554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.