IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.08019.html
   My bibliography  Save this paper

Signal or Noise? Evaluating Large Language Models in Resume Screening Across Contextual Variations and Human Expert Benchmarks

Author

Listed:
  • Aryan Varshney
  • Venkat Ram Reddy Ganuthula

Abstract

This study investigates whether large language models (LLMs) exhibit consistent behavior (signal) or random variation (noise) when screening resumes against job descriptions, and how their performance compares to human experts. Using controlled datasets, we tested three LLMs (Claude, GPT, and Gemini) across contexts (No Company, Firm1 [MNC], Firm2 [Startup], Reduced Context) with identical and randomized resumes, benchmarked against three human recruitment experts. Analysis of variance revealed significant mean differences in four of eight LLM-only conditions and consistently significant differences between LLM and human evaluations (p 0.1), while all LLMs differed significantly from human experts across contexts. Meta-cognition analysis highlighted adaptive weighting patterns that differ markedly from human evaluation approaches. Findings suggest LLMs offer interpretable patterns with detailed prompts but diverge substantially from human judgment, informing their deployment in automated hiring systems.

Suggested Citation

  • Aryan Varshney & Venkat Ram Reddy Ganuthula, 2025. "Signal or Noise? Evaluating Large Language Models in Resume Screening Across Contextual Variations and Human Expert Benchmarks," Papers 2507.08019, arXiv.org.
  • Handle: RePEc:arx:papers:2507.08019
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.08019
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.08019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.