IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.05994.html
   My bibliography  Save this paper

Beating the Best Constant Rebalancing Portfolio in Long-Term Investment: A Generalization of the Kelly Criterion and Universal Learning Algorithm for Markets with Serial Dependence

Author

Listed:
  • Duy Khanh Lam

Abstract

In the online portfolio optimization framework, existing learning algorithms generate strategies that yield significantly poorer cumulative wealth compared to the best constant rebalancing portfolio in hindsight, despite being consistent in asymptotic growth rate. While this unappealing performance can be improved by incorporating more side information, it raises difficulties in feature selection and high-dimensional settings. Instead, the inherent serial dependence of assets' returns, such as day-of-the-week and other calendar effects, can be leveraged. Although latent serial dependence patterns are commonly detected using large training datasets, this paper proposes an algorithm that learns such dependence using only gradually revealed data, without any assumption on their distribution, to form a strategy that eventually exceeds the cumulative wealth of the best constant rebalancing portfolio. Moreover, the classical Kelly criterion, which requires independent assets' returns, is generalized to accommodate serial dependence in a market modeled as an independent and identically distributed process of random matrices. In such a stochastic market, where existing learning algorithms designed for stationary processes fail to apply, the proposed learning algorithm still generates a strategy that asymptotically grows to the highest rate among all strategies, matching that of the optimal strategy constructed under the generalized Kelly criterion. The experimental results with real market data demonstrate the theoretical guarantees of the algorithm and its performance as expected, as long as serial dependence is significant, regardless of the validity of the generalized Kelly criterion in the experimental market. This further affirms the broad applicability of the algorithm in general contexts.

Suggested Citation

  • Duy Khanh Lam, 2025. "Beating the Best Constant Rebalancing Portfolio in Long-Term Investment: A Generalization of the Kelly Criterion and Universal Learning Algorithm for Markets with Serial Dependence," Papers 2507.05994, arXiv.org.
  • Handle: RePEc:arx:papers:2507.05994
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.05994
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.05994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.