IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.03963.html
   My bibliography  Save this paper

Quantum Stochastic Walks for Portfolio Optimization: Theory and Implementation on Financial Networks

Author

Listed:
  • Yen Jui Chang
  • Wei-Ting Wang
  • Yun-Yuan Wang
  • Chen-Yu Liu
  • Kuan-Cheng Chen
  • Ching-Ray Chang

Abstract

Financial markets are noisy yet contain a latent graph-theoretic structure that can be exploited for superior risk-adjusted returns. We propose a quantum stochastic walk (QSW) optimizer that embeds assets in a weighted graph: nodes represent securities while edges encode the return-covariance kernel. Portfolio weights are derived from the walk's stationary distribution. Three empirical studies support the approach. (i) For the top 100 S\&P 500 constituents over 2016-2024, six scenario portfolios calibrated on 1- and 2-year windows lift the out-of-sample Sharpe ratio by up to 27\% while cutting annual turnover from 480\% (mean-variance) to 2-90%. (ii) A $5^{4}=625$-point grid search identifies a robust sweet spot, $\alpha,\lambda\lesssim0.5$ and $\omega\in[0.2,0.4]$, that delivers Sharpe $\approx0.97$ at $\le 5\%$ turnover and Herfindahl-Hirschman index $\sim0.01$. (iii) Repeating the full grid on 50 random 100-stock subsets of the S\&P 500 adds 31\,350 back-tests: the best-per-draw QSW beats re-optimised mean-variance on Sharpe in 54\% of cases and always wins on trading efficiency, with median turnover 36\% versus 351\%. Overall, QSW raises the annualized Sharpe ratio by 15\% and cuts turnover by 90\% relative to classical optimisation, all while respecting the UCITS 5/10/40 rule. These results show that hybrid quantum-classical dynamics can uncover non-linear dependencies overlooked by quadratic models and offer a practical, low-cost weighting engine for themed ETFs and other systematic mandates.

Suggested Citation

  • Yen Jui Chang & Wei-Ting Wang & Yun-Yuan Wang & Chen-Yu Liu & Kuan-Cheng Chen & Ching-Ray Chang, 2025. "Quantum Stochastic Walks for Portfolio Optimization: Theory and Implementation on Financial Networks," Papers 2507.03963, arXiv.org.
  • Handle: RePEc:arx:papers:2507.03963
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.03963
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    2. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    3. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    4. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    5. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    6. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    7. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    10. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    11. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    12. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    13. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    14. Kissell, Robert, 2013. "The Science of Algorithmic Trading and Portfolio Management," Elsevier Monographs, Elsevier, edition 1, number 9780124016897.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    2. Thomas J. Brennan & Andrew W. Lo, 2010. "Impossible Frontiers," Management Science, INFORMS, vol. 56(6), pages 905-923, June.
    3. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    4. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    5. Yuki Shigeta, 2016. "Optimality of Naive Investment Strategies in Dynamic MeanVariance Optimization Problems with Multiple Priors," Discussion papers e-16-004, Graduate School of Economics , Kyoto University.
    6. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    7. Yilie Huang & Yanwei Jia & Xun Yu Zhou, 2024. "Mean--Variance Portfolio Selection by Continuous-Time Reinforcement Learning: Algorithms, Regret Analysis, and Empirical Study," Papers 2412.16175, arXiv.org, revised Aug 2025.
    8. Karagiannidis, Iordanis & Vozlyublennaia, Nadia, 2016. "Limits to mutual funds' ability to rely on mean/variance optimization," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 282-292.
    9. Nolan Alexander & William Scherer, 2024. "Using Machine Learning to Forecast Market Direction with Efficient Frontier Coefficients," Papers 2404.00825, arXiv.org.
    10. Jung, Sean S. & Chang, Woojin, 2016. "Clustering stocks using partial correlation coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 410-420.
    11. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    12. Sebastien Valeyre & Sofiane Aboura & Denis Grebenkov, 2019. "The Reactive Beta Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 42(1), pages 71-113, March.
    13. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    14. Haoran Wang & Shi Yu, 2021. "Robo-Advising: Enhancing Investment with Inverse Optimization and Deep Reinforcement Learning," Papers 2105.09264, arXiv.org.
    15. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    16. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    17. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    18. Ruenzi, Stefan & Ungeheuer, Michael & Weigert, Florian, 2020. "Joint Extreme events in equity returns and liquidity and their cross-sectional pricing implications," Journal of Banking & Finance, Elsevier, vol. 115(C).
    19. Adil Rengim Cetingoz & Jean‐David Fermanian & Olivier Guéant, 2024. "Risk Budgeting portfolios: Existence and computation," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 896-924, July.
    20. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.03963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.