IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.03963.html
   My bibliography  Save this paper

Quantum Stochastic Walks for Portfolio Optimization: Theory and Implementation on Financial Networks

Author

Listed:
  • Yen Jui Chang
  • Wei-Ting Wang
  • Yun-Yuan Wang
  • Chen-Yu Liu
  • Kuan-Cheng Chen
  • Ching-Ray Chang

Abstract

Financial markets are noisy yet contain a latent graph-theoretic structure that can be exploited for superior risk-adjusted returns. We propose a quantum stochastic walk (QSW) optimizer that embeds assets in a weighted graph: nodes represent securities while edges encode the return-covariance kernel. Portfolio weights are derived from the walk's stationary distribution. Three empirical studies support the approach. (i) For the top 100 S\&P 500 constituents over 2016-2024, six scenario portfolios calibrated on 1- and 2-year windows lift the out-of-sample Sharpe ratio by up to 27\% while cutting annual turnover from 480\% (mean-variance) to 2-90%. (ii) A $5^{4}=625$-point grid search identifies a robust sweet spot, $\alpha,\lambda\lesssim0.5$ and $\omega\in[0.2,0.4]$, that delivers Sharpe $\approx0.97$ at $\le 5\%$ turnover and Herfindahl-Hirschman index $\sim0.01$. (iii) Repeating the full grid on 50 random 100-stock subsets of the S\&P 500 adds 31\,350 back-tests: the best-per-draw QSW beats re-optimised mean-variance on Sharpe in 54\% of cases and always wins on trading efficiency, with median turnover 36\% versus 351\%. Overall, QSW raises the annualized Sharpe ratio by 15\% and cuts turnover by 90\% relative to classical optimisation, all while respecting the UCITS 5/10/40 rule. These results show that hybrid quantum-classical dynamics can uncover non-linear dependencies overlooked by quadratic models and offer a practical, low-cost weighting engine for themed ETFs and other systematic mandates.

Suggested Citation

  • Yen Jui Chang & Wei-Ting Wang & Yun-Yuan Wang & Chen-Yu Liu & Kuan-Cheng Chen & Ching-Ray Chang, 2025. "Quantum Stochastic Walks for Portfolio Optimization: Theory and Implementation on Financial Networks," Papers 2507.03963, arXiv.org.
  • Handle: RePEc:arx:papers:2507.03963
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.03963
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.03963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.