IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01968.html
   My bibliography  Save this paper

Optimising task allocation to balance business goals and worker well-being for financial service workforces

Author

Listed:
  • Chris Duckworth
  • Zlatko Zlatev
  • James Sciberras
  • Peter Hallett
  • Enrico Gerding

Abstract

Purpose: Financial service companies manage huge volumes of data which requires timely error identification and resolution. The associated tasks to resolve these errors frequently put financial analyst workforces under significant pressure leading to resourcing challenges and increased business risk. To address this challenge, we introduce a formal task allocation model which considers both business orientated goals and analyst well-being. Methodology: We use a Genetic Algorithm (GA) to optimise our formal model to allocate and schedule tasks to analysts. The proposed solution is able to allocate tasks to analysts with appropriate skills and experience, while taking into account staff well-being objectives. Findings: We demonstrate our GA model outperforms baseline heuristics, current working practice, and is applicable to a range of single and multi-objective real-world scenarios. We discuss the potential for metaheuristics (such as GAs) to efficiently find sufficiently good allocations which can provide recommendations for financial service managers in-the-loop. Originality: A key gap in existing allocation and scheduling models, is fully considering worker well-being. This paper presents an allocation model which explicitly optimises for well-being while still improving on current working practice for efficiency.

Suggested Citation

  • Chris Duckworth & Zlatko Zlatev & James Sciberras & Peter Hallett & Enrico Gerding, 2025. "Optimising task allocation to balance business goals and worker well-being for financial service workforces," Papers 2507.01968, arXiv.org.
  • Handle: RePEc:arx:papers:2507.01968
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01968
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    2. Quan, Gang & Greenwood, Garrison W. & Liu, Donglin & Hu, Sharon, 2007. "Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1969-1984, March.
    3. Barbara A. Sypniewska, 2014. "Evaluation of Factors Influencing Job Satisfaction," Contemporary Economics, Vizja University, vol. 8(1), March.
    4. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bruecker, Philippe & Beliën, Jeroen & Van den Bergh, Jorne & Demeulemeester, Erik, 2018. "A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance," European Journal of Operational Research, Elsevier, vol. 267(2), pages 439-452.
    2. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    3. Ellen Bockstal & Broos Maenhout, 2019. "A study on the impact of prioritising emergency department arrivals on the patient waiting time," Health Care Management Science, Springer, vol. 22(4), pages 589-614, December.
    4. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    5. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    6. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    7. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    8. Mohamed-Amine Ouberkouk & Jean-Paul Boufflet & Aziz Moukrim, 2023. "Effective adaptive large neighborhood search for a firefighters timetabling problem," Journal of Heuristics, Springer, vol. 29(4), pages 545-580, December.
    9. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    10. Jonas Ingels & Broos Maenhout, 2018. "The impact of overtime as a time-based proactive scheduling and reactive allocation strategy on the robustness of a personnel shift roster," Journal of Scheduling, Springer, vol. 21(2), pages 143-165, April.
    11. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    12. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    13. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    14. Doi, Tsubasa & Nishi, Tatsushi & Voß, Stefan, 2018. "Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time," European Journal of Operational Research, Elsevier, vol. 267(2), pages 428-438.
    15. Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
    16. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    17. Ladier, Anne-Laure & Alpan, Gülgün & Penz, Bernard, 2014. "Joint employee weekly timetabling and daily rostering: A decision-support tool for a logistics platform," European Journal of Operational Research, Elsevier, vol. 234(1), pages 278-291.
    18. Vlado Popović & Milorad Kilibarda & Milan Andrejić & Borut Jereb & Dejan Dragan, 2021. "A New Sustainable Warehouse Management Approach for Workforce and Activities Scheduling," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    19. Andreas Fügener & Jens O. Brunner, 2019. "Planning for Overtime: The Value of Shift Extensions in Physician Scheduling," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 732-744, October.
    20. Xiang Li & Haoyue Fan & Jiaming Liu & Qifeng Xun, 2022. "Staff scheduling in blood collection problems," Annals of Operations Research, Springer, vol. 316(1), pages 365-400, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.