IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.01202.html
   My bibliography  Save this paper

Shrinkage-Based Regressions with Many Related Treatments

Author

Listed:
  • Enes Dilber
  • Colin Gray

Abstract

When using observational causal models, practitioners often want to disentangle the effects of many related, partially-overlapping treatments. Examples include estimating treatment effects of different marketing touchpoints, ordering different types of products, or signing up for different services. Common approaches that estimate separate treatment coefficients are too noisy for practical decision-making. We propose a computationally light model that uses a customized ridge regression to move between a heterogeneous and a homogenous model: it substantially reduces MSE for the effects of each individual sub-treatment while allowing us to easily reconstruct the effects of an aggregated treatment. We demonstrate the properties of this estimator in theory and simulation, and illustrate how it has unlocked targeted decision-making at Wayfair.

Suggested Citation

  • Enes Dilber & Colin Gray, 2025. "Shrinkage-Based Regressions with Many Related Treatments," Papers 2507.01202, arXiv.org.
  • Handle: RePEc:arx:papers:2507.01202
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.01202
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.01202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.