IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.22888.html
   My bibliography  Save this paper

SABR-Informed Multitask Gaussian Process: A Synthetic-to-Real Framework for Implied Volatility Surface Construction

Author

Listed:
  • Jirong Zhuang
  • Xuan Wu

Abstract

Constructing the Implied Volatility Surface (IVS) is a challenging task in quantitative finance due to the complexity of real markets and the sparsity of market data. Structural models like Stochastic Alpha Beta Rho (SABR) model offer interpretability and theoretical consistency but lack flexibility, while purely data-driven methods such as Gaussian Process regression can struggle with sparse data. We introduce SABR-Informed Multi-Task Gaussian Process (SABR-MTGP), treating IVS construction as a multi-task learning problem. Our method uses a dense synthetic dataset from a calibrated SABR model as a source task to inform the construction based on sparse market data (the target task). The MTGP framework captures task correlation and transfers structural information adaptively, improving predictions particularly in data-scarce regions. Experiments using Heston-generated ground truth data under various market conditions show that SABR-MTGP outperforms both standard Gaussian process regression and SABR across different maturities. Furthermore, an application to real SPX market data demonstrates the method's practical applicability and its ability to produce stable and realistic surfaces. This confirms our method balances structural guidance from SABR with the flexibility needed for market data.

Suggested Citation

  • Jirong Zhuang & Xuan Wu, 2025. "SABR-Informed Multitask Gaussian Process: A Synthetic-to-Real Framework for Implied Volatility Surface Construction," Papers 2506.22888, arXiv.org.
  • Handle: RePEc:arx:papers:2506.22888
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.22888
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.