Author
Listed:
- Shrenik Jadhav
- Birva Sevak
- Srijita Das
- Akhtar Hussain
- Wencong Su
- Van-Hai Bui
Abstract
Peer-to-peer (P2P) trading is increasingly recognized as a key mechanism for decentralized market regulation, yet existing approaches often lack robust frameworks to ensure fairness. This paper presents FairMarket-RL, a novel hybrid framework that combines Large Language Models (LLMs) with Reinforcement Learning (RL) to enable fairness-aware trading agents. In a simulated P2P microgrid with multiple sellers and buyers, the LLM acts as a real-time fairness critic, evaluating each trading episode using two metrics: Fairness-To-Buyer (FTB) and Fairness-Between-Sellers (FBS). These fairness scores are integrated into agent rewards through scheduled {\lambda}-coefficients, forming an adaptive LLM-guided reward shaping loop that replaces brittle, rule-based fairness constraints. Agents are trained using Independent Proximal Policy Optimization (IPPO) and achieve equitable outcomes, fulfilling over 90% of buyer demand, maintaining fair seller margins, and consistently reaching FTB and FBS scores above 0.80. The training process demonstrates that fairness feedback improves convergence, reduces buyer shortfalls, and narrows profit disparities between sellers. With its language-based critic, the framework scales naturally, and its extension to a large power distribution system with household prosumers illustrates its practical applicability. FairMarket-RL thus offers a scalable, equity-driven solution for autonomous trading in decentralized energy systems.
Suggested Citation
Shrenik Jadhav & Birva Sevak & Srijita Das & Akhtar Hussain & Wencong Su & Van-Hai Bui, 2025.
"FairMarket-RL: LLM-Guided Fairness Shaping for Multi-Agent Reinforcement Learning in Peer-to-Peer Markets,"
Papers
2506.22708, arXiv.org.
Handle:
RePEc:arx:papers:2506.22708
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.22708. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.