IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.16230.html
   My bibliography  Save this paper

On Design of Representative Distributionally Robust Formulations for Evaluation of Tail Risk Measures

Author

Listed:
  • Anand Deo

Abstract

Conditional Value-at-Risk (CVaR) is a risk measure widely used to quantify the impact of extreme losses. Owing to the lack of representative samples CVaR is sensitive to the tails of the underlying distribution. In order to combat this sensitivity, Distributionally Robust Optimization (DRO), which evaluates the worst-case CVaR measure over a set of plausible data distributions is often deployed. Unfortunately, an improper choice of the DRO formulation can lead to a severe underestimation of tail risk. This paper aims at leveraging extreme value theory to arrive at a DRO formulation which leads to representative worst-case CVaR evaluations in that the above pitfall is avoided while simultaneously, the worst case evaluation is not a gross over-estimate of the true CVaR. We demonstrate theoretically that even when there is paucity of samples in the tail of the distribution, our formulation is readily implementable from data, only requiring calibration of a single scalar parameter. We showcase that our formulation can be easily extended to provide robustness to tail risk in multivariate applications as well as in the evaluation of other commonly used risk measures. Numerical illustrations on synthetic and real-world data showcase the practical utility of our approach.

Suggested Citation

  • Anand Deo, 2025. "On Design of Representative Distributionally Robust Formulations for Evaluation of Tail Risk Measures," Papers 2506.16230, arXiv.org.
  • Handle: RePEc:arx:papers:2506.16230
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.16230
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2018. "Multivariate peaks over thresholds models," LIDAM Reprints ISBA 2018005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    3. Oliver Kley & Claudia Klüppelberg & Gesine Reinert, 2016. "Risk in a Large Claims Insurance Market with Bipartite Graph Structure," Operations Research, INFORMS, vol. 64(5), pages 1159-1176, October.
    4. Guanyu Jin & Roger J. A. Laeven & Dick den Hertog & Aharon Ben-Tal, 2024. "Constructing Uncertainty Sets for Robust Risk Measures: A Composition of $\phi$-Divergences Approach to Combat Tail Uncertainty," Papers 2412.05234, arXiv.org.
    5. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    6. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    7. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    8. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    9. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    10. Anand Deo & Karthyek Murthy, 2025. "The Scaling Behaviors in Achieving High Reliability via Chance-Constrained Optimization," Papers 2504.07728, arXiv.org.
    11. Rui Gao & Anton Kleywegt, 2023. "Distributionally Robust Stochastic Optimization with Wasserstein Distance," Mathematics of Operations Research, INFORMS, vol. 48(2), pages 603-655, May.
    12. Yuen, Robert & Stoev, Stilian & Cooley, Daniel, 2020. "Distributionally robust inference for extreme Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 70-89.
    13. Henry Lam & Clementine Mottet, 2017. "Tail Analysis Without Parametric Models: A Worst-Case Perspective," Operations Research, INFORMS, vol. 65(6), pages 1696-1711, December.
    14. Einmahl, J.H.J. & Mason, D.M., 1988. "Laws of the iterated logarithm in the tails for weighted uniform empirical processes," Other publications TiSEM d5a5a8d5-c060-4344-9675-2, Tilburg University, School of Economics and Management.
    15. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    16. Li Zhu & Haijun Li, 2012. "Asymptotic Analysis of Multivariate Tail Conditional Expectations," North American Actuarial Journal, Taylor & Francis Journals, vol. 16(3), pages 350-363.
    17. John C. Duchi & Peter W. Glynn & Hongseok Namkoong, 2021. "Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach," Mathematics of Operations Research, INFORMS, vol. 46(3), pages 946-969, August.
    18. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    19. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    20. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    21. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    22. Thomas Kruse & Judith C. Schneider & Nikolaus Schweizer, 2021. "A Toolkit for Robust Risk Assessment Using F -Divergences," Management Science, INFORMS, vol. 67(10), pages 6529-6552, October.
    23. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    24. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    25. Gah-Yi Ban & Noureddine El Karoui & Andrew E. B. Lim, 2018. "Machine Learning and Portfolio Optimization," Management Science, INFORMS, vol. 64(3), pages 1136-1154, March.
    26. Karthik Natarajan & Dongjian Shi & Kim-Chuan Toh, 2014. "A Probabilistic Model for Minmax Regret in Combinatorial Optimization," Operations Research, INFORMS, vol. 62(1), pages 160-181, February.
    27. Henry Lam, 2019. "Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization," Operations Research, INFORMS, vol. 67(4), pages 1090-1105, July.
    28. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    29. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    30. Jun-Ya Gotoh & Keita Shinozaki & Akiko Takeda, 2013. "Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1621-1635, October.
    31. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    32. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    33. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    34. Fabio Caccioli & Imre Kondor & Gábor Papp, 2018. "Portfolio optimization under Expected Shortfall: contour maps of estimation error," Quantitative Finance, Taylor & Francis Journals, vol. 18(8), pages 1295-1313, August.
    35. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Du & Dejian Tian & Hui Zhang, 2025. "Robust distortion risk measures with linear penalty under distribution uncertainty," Papers 2503.15824, arXiv.org.
    2. Silvana Pesenti & Qiuqi Wang & Ruodu Wang, 2020. "Optimizing distortion riskmetrics with distributional uncertainty," Papers 2011.04889, arXiv.org, revised Feb 2022.
    3. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    4. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    5. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    6. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    7. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    8. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    9. Aleksandrina Goeva & Henry Lam & Huajie Qian & Bo Zhang, 2019. "Optimization-Based Calibration of Simulation Input Models," Operations Research, INFORMS, vol. 67(5), pages 1362-1382, September.
    10. Embrechts Paul & Wang Ruodu, 2015. "Seven Proofs for the Subadditivity of Expected Shortfall," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-15, October.
    11. Guanyu Jin & Roger J. A. Laeven & Dick den Hertog & Aharon Ben-Tal, 2024. "Constructing Uncertainty Sets for Robust Risk Measures: A Composition of $\phi$-Divergences Approach to Combat Tail Uncertainty," Papers 2412.05234, arXiv.org.
    12. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    13. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    14. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    15. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    16. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    17. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    18. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    19. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    20. Zhaolin Hu & L. Jeff Hong, 2022. "Robust Simulation with Likelihood-Ratio Constrained Input Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2350-2367, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.16230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.