IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.06377.html
   My bibliography  Save this paper

Evaluating Large Language Model Capabilities in Assessing Spatial Econometrics Research

Author

Listed:
  • Giuseppe Arbia
  • Luca Morandini
  • Vincenzo Nardelli

Abstract

This paper investigates Large Language Models (LLMs) ability to assess the economic soundness and theoretical consistency of empirical findings in spatial econometrics. We created original and deliberately altered "counterfactual" summaries from 28 published papers (2005-2024), which were evaluated by a diverse set of LLMs. The LLMs provided qualitative assessments and structured binary classifications on variable choice, coefficient plausibility, and publication suitability. The results indicate that while LLMs can expertly assess the coherence of variable choices (with top models like GPT-4o achieving an overall F1 score of 0.87), their performance varies significantly when evaluating deeper aspects such as coefficient plausibility and overall publication suitability. The results further revealed that the choice of LLM, the specific characteristics of the paper and the interaction between these two factors significantly influence the accuracy of the assessment, particularly for nuanced judgments. These findings highlight LLMs' current strengths in assisting with initial, more surface-level checks and their limitations in performing comprehensive, deep economic reasoning, suggesting a potential assistive role in peer review that still necessitates robust human oversight.

Suggested Citation

  • Giuseppe Arbia & Luca Morandini & Vincenzo Nardelli, 2025. "Evaluating Large Language Model Capabilities in Assessing Spatial Econometrics Research," Papers 2506.06377, arXiv.org.
  • Handle: RePEc:arx:papers:2506.06377
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.06377
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.06377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.