Author
Listed:
- Zikun Ye
- Hema Yoganarasimhan
Abstract
Large Language Models (LLMs) are increasingly used in systems that retrieve and summarize content from multiple sources, such as search engines and AI assistants. While these models enhance user experience by generating coherent summaries, they obscure the contributions of original content creators, raising concerns about credit attribution and compensation. We address the challenge of valuing individual documents used in LLM-generated summaries. We propose using Shapley values, a game-theoretic method that allocates credit based on each document's marginal contribution. Although theoretically appealing, Shapley values are expensive to compute at scale. We therefore propose Cluster Shapley, an efficient approximation algorithm that leverages semantic similarity between documents. By clustering documents using LLM-based embeddings and computing Shapley values at the cluster level, our method significantly reduces computation while maintaining attribution quality. We demonstrate our approach to a summarization task using Amazon product reviews. Cluster Shapley significantly reduces computational complexity while maintaining high accuracy, outperforming baseline methods such as Monte Carlo sampling and Kernel SHAP with a better efficient frontier. Our approach is agnostic to the exact LLM used, the summarization process used, and the evaluation procedure, which makes it broadly applicable to a variety of summarization settings.
Suggested Citation
Zikun Ye & Hema Yoganarasimhan, 2025.
"Document Valuation in LLM Summaries: A Cluster Shapley Approach,"
Papers
2505.23842, arXiv.org.
Handle:
RePEc:arx:papers:2505.23842
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.23842. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.