Author
Listed:
- Qingyu Li
- Chiranjib Mukhopadhyay
- Abolfazl Bayat
- Ali Habibnia
Abstract
Recent advances in quantum computing have demonstrated its potential to significantly enhance the analysis and forecasting of complex classical data. Among these, quantum reservoir computing has emerged as a particularly powerful approach, combining quantum computation with machine learning for modeling nonlinear temporal dependencies in high-dimensional time series. As with many data-driven disciplines, quantitative finance and econometrics can hugely benefit from emerging quantum technologies. In this work, we investigate the application of quantum reservoir computing for realized volatility forecasting. Our model employs a fully connected transverse-field Ising Hamiltonian as the reservoir with distinct input and memory qubits to capture temporal dependencies. The quantum reservoir computing approach is benchmarked against several econometric models and standard machine learning algorithms. The models are evaluated using multiple error metrics and the model confidence set procedures. To enhance interpretability and mitigate current quantum hardware limitations, we utilize wrapper-based forward selection for feature selection, identifying optimal subsets, and quantifying feature importance via Shapley values. Our results indicate that the proposed quantum reservoir approach consistently outperforms benchmark models across various metrics, highlighting its potential for financial forecasting despite existing quantum hardware constraints. This work serves as a proof-of-concept for the applicability of quantum computing in econometrics and financial analysis, paving the way for further research into quantum-enhanced predictive modeling as quantum hardware capabilities continue to advance.
Suggested Citation
Qingyu Li & Chiranjib Mukhopadhyay & Abolfazl Bayat & Ali Habibnia, 2025.
"Quantum Reservoir Computing for Realized Volatility Forecasting,"
Papers
2505.13933, arXiv.org.
Handle:
RePEc:arx:papers:2505.13933
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.13933. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.