IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.03109.html
   My bibliography  Save this paper

Deep Learning in Renewable Energy Forecasting: A Cross-Dataset Evaluation of Temporal and Spatial Models

Author

Listed:
  • Lutfu Sua
  • Haibo Wang
  • Jun Huang

Abstract

Unpredictability of renewable energy sources coupled with the complexity of those methods used for various purposes in this area calls for the development of robust methods such as DL models within the renewable energy domain. Given the nonlinear relationships among variables in renewable energy datasets, DL models are preferred over traditional machine learning (ML) models because they can effectively capture and model complex interactions between variables. This research aims to identify the factors responsible for the accuracy of DL techniques, such as sampling, stationarity, linearity, and hyperparameter optimization for different algorithms. The proposed DL framework compares various methods and alternative training/test ratios. Seven ML methods, such as Long-Short Term Memory (LSTM), Stacked LSTM, Convolutional Neural Network (CNN), CNN-LSTM, Deep Neural Network (DNN), Multilayer Perceptron (MLP), and Encoder-Decoder (ED), were evaluated on two different datasets. The first dataset contains the weather and power generation data. It encompasses two distinct datasets, hourly energy demand data and hourly weather data in Spain, while the second dataset includes power output generated by the photovoltaic panels at 12 locations. This study deploys regularization approaches, including early stopping, neuron dropping, and L2 regularization, to reduce the overfitting problem associated with DL models. The LSTM and MLP models show superior performance. Their validation data exhibit exceptionally low root mean square error values.

Suggested Citation

  • Lutfu Sua & Haibo Wang & Jun Huang, 2025. "Deep Learning in Renewable Energy Forecasting: A Cross-Dataset Evaluation of Temporal and Spatial Models," Papers 2505.03109, arXiv.org.
  • Handle: RePEc:arx:papers:2505.03109
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.03109
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.03109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.