IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.20488.html
   My bibliography  Save this paper

Scaling and shape of financial returns distributions modeled as conditionally independent random variables

Author

Listed:
  • Hern'an Larralde
  • Roberto Mota Navarro

Abstract

We show that assuming that the returns are independent when conditioned on the value of their variance (volatility), which itself varies in time randomly, then the distribution of returns is well described by the statistics of the sum of conditionally independent random variables. In particular, we show that the distribution of returns can be cast in a simple scaling form, and that its functional form is directly related to the distribution of the volatilities. This approach explains the presence of power-law tails in the returns as a direct consequence of the presence of a power law tail in the distribution of volatilities. It also provides the form of the distribution of Bitcoin returns, which behaves as a stretched exponential, as a consequence of the fact that the Bitcoin volatilities distribution is also closely described by a stretched exponential. We test our predictions with data from the S\&P 500 index, Apple and Paramount stocks; and Bitcoin.

Suggested Citation

  • Hern'an Larralde & Roberto Mota Navarro, 2025. "Scaling and shape of financial returns distributions modeled as conditionally independent random variables," Papers 2504.20488, arXiv.org.
  • Handle: RePEc:arx:papers:2504.20488
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.20488
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.20488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.