IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.19050.html
   My bibliography  Save this paper

Phase Transitions in Financial Markets Using the Ising Model: A Statistical Mechanics Perspective

Author

Listed:
  • Bruno Giorgio

Abstract

This dissertation investigates the ability of the Ising model to replicate statistical characteristics, or stylized facts, commonly observed in financial assets. The study specifically examines in the S&P500 index the following features: volatility clustering, negative skewness, heavy tails, the absence of autocorrelation in returns, and the presence of autocorrelation in absolute returns. A significant portion of the dissertation is dedicated to Ising model-based simulations. Due to the lack of an analytical or deterministic solution, the Monte Carlo method was employed to explore the model's statistical properties. The results demonstrate that the Ising model is capable of replicating the majority of the statistical features analyzed.

Suggested Citation

  • Bruno Giorgio, 2025. "Phase Transitions in Financial Markets Using the Ising Model: A Statistical Mechanics Perspective," Papers 2504.19050, arXiv.org.
  • Handle: RePEc:arx:papers:2504.19050
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.19050
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.19050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.