IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.06782.html
   My bibliography  Save this paper

Probabilistic Grading and Classification System for End-of-Life Building Components Toward Circular Economy Loop

Author

Listed:
  • Yiping Meng
  • Sergio Cavalaro
  • Mohamed Osmani

Abstract

The longevity and viability of construction components in a circular economy demand a robust, data-informed framework for reuse decision-making. This paper introduces a multi-level grading and classification system that combines Bayesian probabilistic modeling with scenario-based performance thresholds to assess the reusability of end-of-life modular components. By grading components across a five-tier scale, the system supports strategic decisions for reuse, up-use, or down-use, ensuring alignment with engineering standards and sustainability objectives. The model's development is grounded in empirical data from precast concrete wall panels, and its explainability is enhanced through decision tree logic and Sankey visualizations that trace the influence of contextual scenarios on classification outcomes. MGCS addresses the environmental, economic, and operational challenges of EoL management--reducing material waste, optimizing value recovery, and improving workflow efficiency. Through dynamic feature weighting and transparent reasoning, the system offers a practical yet rigorous pathway to embed circular thinking into construction industry practices.

Suggested Citation

  • Yiping Meng & Sergio Cavalaro & Mohamed Osmani, 2025. "Probabilistic Grading and Classification System for End-of-Life Building Components Toward Circular Economy Loop," Papers 2504.06782, arXiv.org.
  • Handle: RePEc:arx:papers:2504.06782
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.06782
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.06782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.