IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.13056.html
   My bibliography  Save this paper

Deep Hedging of Green PPAs in Electricity Markets

Author

Listed:
  • Richard Biegler-Konig
  • Daniel Oeltz

Abstract

In power markets, Green Power Purchase Agreements have become an important contractual tool of the energy transition from fossil fuels to renewable sources such as wind or solar radiation. Trading Green PPAs exposes agents to price risks and weather risks. Also, developed electricity markets feature the so-called cannibalisation effect : large infeeds induce low prices and vice versa. As weather is a non-tradable entity the question arises how to hedge and risk-manage in this highly incom-plete setting. We propose a ''deep hedging'' framework utilising machine learning methods to construct hedging strategies. The resulting strategies outperform static and dynamic benchmark strategies with respect to different risk measures.

Suggested Citation

  • Richard Biegler-Konig & Daniel Oeltz, 2025. "Deep Hedging of Green PPAs in Electricity Markets," Papers 2503.13056, arXiv.org.
  • Handle: RePEc:arx:papers:2503.13056
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.13056
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hans Buehler & Phillip Murray & Mikko S. Pakkanen & Ben Wood, 2021. "Deep Hedging: Learning to Remove the Drift under Trading Frictions with Minimal Equivalent Near-Martingale Measures," Papers 2111.07844, arXiv.org, revised Jan 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Wiese & Phillip Murray & Ralf Korn, 2023. "Sig-Splines: universal approximation and convex calibration of time series generative models," Papers 2307.09767, arXiv.org.
    2. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    3. El Amine Cherrat & Snehal Raj & Iordanis Kerenidis & Abhishek Shekhar & Ben Wood & Jon Dee & Shouvanik Chakrabarti & Richard Chen & Dylan Herman & Shaohan Hu & Pierre Minssen & Ruslan Shaydulin & Yue , 2023. "Quantum Deep Hedging," Papers 2303.16585, arXiv.org, revised Nov 2023.
    4. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.13056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.