IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.06251.html
   My bibliography  Save this paper

Entropy-Assisted Quality Pattern Identification in Finance

Author

Listed:
  • Rishabh Gupta
  • Shivam Gupta
  • Jaskirat Singh
  • Sabre Kais

Abstract

Short-term patterns in financial time series form the cornerstone of many algorithmic trading strategies, yet extracting these patterns reliably from noisy market data remains a formidable challenge. In this paper, we propose an entropy-assisted framework for identifying high-quality, non-overlapping patterns that exhibit consistent behavior over time. We ground our approach in the premise that historical patterns, when accurately clustered and pruned, can yield substantial predictive power for short-term price movements. To achieve this, we incorporate an entropy-based measure as a proxy for information gain. Patterns that lead to high one-sided movements in historical data, yet retain low local entropy, are more informative in signaling future market direction. Compared to conventional clustering techniques such as K-means and Gaussian Mixture Models (GMM), which often yield biased or unbalanced groupings, our approach emphasizes balance over a forced visual boundary, ensuring that quality patterns are not lost due to over-segmentation. By emphasizing both predictive purity (low local entropy) and historical profitability, our method achieves a balanced representation of Buy and Sell patterns, making it better suited for short-term algorithmic trading strategies.

Suggested Citation

  • Rishabh Gupta & Shivam Gupta & Jaskirat Singh & Sabre Kais, 2025. "Entropy-Assisted Quality Pattern Identification in Finance," Papers 2503.06251, arXiv.org.
  • Handle: RePEc:arx:papers:2503.06251
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.06251
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.06251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.