Author
Listed:
- Melih .Ic{s}eri
- Erhan Bayraktar
Abstract
This work introduces a unified framework for analyzing games in greater depth. In the existing literature, players' strategies are typically assigned scalar values, and equilibrium concepts are used to identify compatible choices. However, this approach neglects the internal structure of players, thereby failing to accurately model observed behaviors. To address this limitation, we propose an abstract definition of a player, consistent with constructions in reinforcement learning. Instead of defining games as external settings, our framework defines them in terms of the players themselves. This offers a language that enables a deeper connection between games and learning. To illustrate the need for this generality, we study a simple two-player game and show that even in basic settings, a sophisticated player may adopt dynamic strategies that cannot be captured by simpler models or compatibility analysis. For a general definition of a player, we discuss natural conditions on its components and define competition through their behavior. In the discrete setting, we consider players whose estimates largely follow the standard framework from the literature. We explore connections to correlated equilibrium and highlight that dynamic programming naturally applies to all estimates. In the mean-field setting, we exploit symmetry to construct explicit examples of equilibria. Finally, we conclude by examining relations to reinforcement learning.
Suggested Citation
Melih .Ic{s}eri & Erhan Bayraktar, 2025.
"The Learning Approach to Games,"
Papers
2503.00227, arXiv.org, revised Oct 2025.
Handle:
RePEc:arx:papers:2503.00227
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.00227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.