IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.15090.html
   My bibliography  Save this paper

Fast and Efficient Bayesian Analysis of Structural Vector Autoregressions Using the R Package bsvars

Author

Listed:
  • Tomasz Wo'zniak

Abstract

The R package bsvars provides a wide range of tools for empirical macroeconomic and financial analyses using Bayesian Structural Vector Autoregressions. It uses frontier econometric techniques and C++ code to ensure fast and efficient estimation of these multivariate dynamic structural models, possibly with many variables, complex identification strategies, and non-linear characteristics. The models can be identified using adjustable exclusion restrictions and heteroskedastic or non-normal shocks. They feature a flexible three-level equation-specific local-global hierarchical prior distribution for the estimated level of shrinkage for autoregressive and structural parameters. Additionally, the package facilitates predictive and structural analyses such as impulse responses, forecast error variance and historical decompositions, forecasting, statistical verification of identification and hypotheses on autoregressive parameters, and analyses of structural shocks, volatilities, and fitted values. These features differentiate bsvars from existing R packages that either focus on a specific structural model, do not consider heteroskedastic shocks, or lack the implementation using compiled code.

Suggested Citation

  • Tomasz Wo'zniak, 2024. "Fast and Efficient Bayesian Analysis of Structural Vector Autoregressions Using the R Package bsvars," Papers 2410.15090, arXiv.org, revised Apr 2025.
  • Handle: RePEc:arx:papers:2410.15090
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.15090
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    2. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    3. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, May.
    4. Matthieu Droumaguet & Anders Warne & Tomasz Woźniak, 2017. "Granger Causality and Regime Inference in Markov Switching VAR Models with Bayesian Methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 802-818, June.
    5. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    6. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    7. Joshua C. C. Chan, 2019. "Large Bayesian Vector Autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    8. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    2. Karin Klieber, 2023. "Non-linear dimension reduction in factor-augmented vector autoregressions," Papers 2309.04821, arXiv.org.
    3. Xiaolei Wang & Tomasz Wo'zniak, 2025. "Bayesian Analyses of Structural Vector Autoregressions with Sign, Zero, and Narrative Restrictions Using the R Package bsvarSIGNs," Papers 2501.16711, arXiv.org.
    4. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    5. Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
    6. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    7. Dimitris Korobilis, 2020. "Sign restrictions in high-dimensional vector autoregressions," Working Paper series 20-09, Rimini Centre for Economic Analysis.
    8. Lütkepohl, Helmut & Woźniak, Tomasz, 2020. "Bayesian inference for structural vector autoregressions identified by Markov-switching heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    9. Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Papers 2404.11057, arXiv.org.
    10. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Feb 2025.
    11. Maximilian Böck & Martin Feldkircher & Florian Huber, 2020. "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R," Globalization Institute Working Papers 395, Federal Reserve Bank of Dallas.
    12. Korobilis, Dimitris, 2022. "A new algorithm for structural restrictions in Bayesian vector autoregressions," European Economic Review, Elsevier, vol. 148(C).
    13. Florian Huber & Gary Koop, 2024. "Fast and order‐invariant inference in Bayesian VARs with nonparametric shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1301-1320, November.
    14. Anna Pajor & Justyna Wróblewska & Łukasz Kwiatkowski & Jacek Osiewalski, 2024. "Hybrid SV‐GARCH, t‐GARCH and Markov‐switching covariance structures in VEC models—Which is better from a predictive perspective?," International Statistical Review, International Statistical Institute, vol. 92(1), pages 62-86, April.
    15. James Cloyne & Joseba Martinez & Haroon Mumtaz & Paolo Surico, 2024. "Taxes, Innovation and Productivity," Working Papers 979, Queen Mary University of London, School of Economics and Finance.
    16. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    17. Alain Guay, 2020. "Identification of Structural Vector Autoregressions Through Higher Unconditional Moments," Working Papers 20-19, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    18. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Montiel Olea, José Luis & Nesbit, James, 2021. "(Machine) learning parameter regions," Journal of Econometrics, Elsevier, vol. 222(1), pages 716-744.
    20. Haroon Mumtaz & Fulvia Marotta, 2023. "Vulnerability to Climate Change: Evidence from a Dynamic Factor Model," Working Papers 961, Queen Mary University of London, School of Economics and Finance.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.15090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.