IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.01624.html
   My bibliography  Save this paper

Intelligent Optimization of Mine Environmental Damage Assessment and Repair Strategies Based on Deep Learning

Author

Listed:
  • Qishuo Cheng

Abstract

In recent decades, financial quantification has emerged and matured rapidly. For financial institutions such as funds, investment institutions are increasingly dissatisfied with the situation of passively constructing investment portfolios with average market returns, and are paying more and more attention to active quantitative strategy investment portfolios. This requires the introduction of active stock investment fund management models. Currently, in my country's stock fund investment market, there are many active quantitative investment strategies, and the algorithms used vary widely, such as SVM, random forest, RNN recurrent memory network, etc. This article focuses on this trend, using the emerging LSTM-GRU gate-controlled long short-term memory network model in the field of financial stock investment as a basis to build a set of active investment stock strategies, and combining it with SVM, which has been widely used in the field of quantitative stock investment. Comparing models such as RNN, theoretically speaking, compared to SVM that simply relies on kernel functions for high-order mapping and classification of data, neural network algorithms such as RNN and LSTM-GRU have better principles and are more suitable for processing financial stock data. Then, through multiple By comparison, it was finally found that the LSTM- GRU gate-controlled long short-term memory network has a better accuracy. By selecting the LSTM-GRU algorithm to construct a trading strategy based on the Shanghai and Shenzhen 300 Index constituent stocks, the parameters were adjusted and the neural layer connection was adjusted. Finally, It has significantly outperformed the benchmark index CSI 300 over the long term. The conclusion of this article is that the research results can provide certain quantitative strategy references for financial institutions to construct active stock investment portfolios.

Suggested Citation

  • Qishuo Cheng, 2024. "Intelligent Optimization of Mine Environmental Damage Assessment and Repair Strategies Based on Deep Learning," Papers 2404.01624, arXiv.org.
  • Handle: RePEc:arx:papers:2404.01624
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.01624
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.01624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.