IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.00015.html
   My bibliography  Save this paper

Empowering Credit Scoring Systems with Quantum-Enhanced Machine Learning

Author

Listed:
  • Javier Mancilla
  • Andr'e Sequeira
  • Tomas Tagliani
  • Francisco Llaneza
  • Claudio Beiza

Abstract

Quantum Kernels are projected to provide early-stage usefulness for quantum machine learning. However, highly sophisticated classical models are hard to surpass without losing interpretability, particularly when vast datasets can be exploited. Nonetheless, classical models struggle once data is scarce and skewed. Quantum feature spaces are projected to find better links between data features and the target class to be predicted even in such challenging scenarios and most importantly, enhanced generalization capabilities. In this work, we propose a novel approach called Systemic Quantum Score (SQS) and provide preliminary results indicating potential advantage over purely classical models in a production grade use case for the Finance sector. SQS shows in our specific study an increased capacity to extract patterns out of fewer data points as well as improved performance over data-hungry algorithms such as XGBoost, providing advantage in a competitive market as it is the FinTech and Neobank regime.

Suggested Citation

  • Javier Mancilla & Andr'e Sequeira & Tomas Tagliani & Francisco Llaneza & Claudio Beiza, 2024. "Empowering Credit Scoring Systems with Quantum-Enhanced Machine Learning," Papers 2404.00015, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2404.00015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.00015
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias C. Caro & Hsin-Yuan Huang & M. Cerezo & Kunal Sharma & Andrew Sornborger & Lukasz Cincio & Patrick J. Coles, 2022. "Generalization in quantum machine learning from few training data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Matthias C. Caro & Hsin-Yuan Huang & Nicholas Ezzell & Joe Gibbs & Andrew T. Sornborger & Lukasz Cincio & Patrick J. Coles & Zoƫ Holmes, 2023. "Out-of-distribution generalization for learning quantum dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.00015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.