IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.13791.html

New Stochastic Fubini Theorems

Author

Listed:
  • Tahir Choulli
  • Martin Schweizer

Abstract

The classic stochastic Fubini theorem says that if one stochastically integrates with respect to a semimartingale $S$ an $\eta(dz)$-mixture of $z$-parametrized integrands $\psi^z$, the result is just the $\eta(dz)$-mixture of the individual $z$-parametrized stochastic integrals $\int\psi^z{d}S.$ But if one wants to use such a result for the study of Volterra semimartingales of the form $ X_t =\int_0^t \Psi_{t,s}dS_s, t \geq0,$ the classic assumption that one has a fixed measure $\eta$ is too restrictive; the mixture over the integrands needs to be taken instead with respect to a stochastic kernel on the parameter space. To handle that situation and prove a corresponding new stochastic Fubini theorem, we introduce a new notion of measure-valued stochastic integration with respect to a general multidimensional semimartingale. As an application, we show how this allows to handle a class of quite general stochastic Volterra semimartingales.

Suggested Citation

  • Tahir Choulli & Martin Schweizer, 2024. "New Stochastic Fubini Theorems," Papers 2403.13791, arXiv.org.
  • Handle: RePEc:arx:papers:2403.13791
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.13791
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baudoin, Fabrice & Nualart, David, 2003. "Equivalence of Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 327-350, October.
    2. Hernández, Camilo, 2023. "On quadratic multidimensional type-I BSVIEs, infinite families of BSDEs and their applications," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 249-298.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Zanten, Harry, 2007. "When is a linear combination of independent fBm's equivalent to a single fBm?," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 57-70, January.
    2. Yazigi, Adil, 2015. "Representation of self-similar Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 94-100.
    3. Tommi Sottinen & Ciprian A. Tudor, 2006. "On the Equivalence of Multiparameter Gaussian Processes," Journal of Theoretical Probability, Springer, vol. 19(2), pages 461-485, June.
    4. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    5. Russo, Francesco & Tudor, Ciprian A., 2006. "On bifractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(5), pages 830-856, May.
    6. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    7. Peccati, Giovanni, 2004. "Anticipative stochastic integration based on time-space chaos," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 331-355, August.
    8. Ouknine, Youssef & Erraoui, Mohamed, 2008. "Equivalence of Volterra processes: Degenerate case," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 435-444, March.
    9. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    10. T. Sottinen, 2004. "On Gaussian Processes Equivalent in Law to Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 17(2), pages 309-325, April.
    11. Dzhaparidze, Kacha & van Zanten, Harry & Zareba, Pawel, 2005. "Representations of fractional Brownian motion using vibrating strings," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 1928-1953, December.
    12. Daw, Lara, 2021. "A uniform result for the dimension of fractional Brownian motion level sets," Statistics & Probability Letters, Elsevier, vol. 169(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.13791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.