IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.06172.html
   My bibliography  Save this paper

CRISIS ALERT:Forecasting Stock Market Crisis Events Using Machine Learning Methods

Author

Listed:
  • Yue Chen
  • Xingyi Andrew
  • Salintip Supasanya

Abstract

Historically, the economic recession often came abruptly and disastrously. For instance, during the 2008 financial crisis, the SP 500 fell 46 percent from October 2007 to March 2009. If we could detect the signals of the crisis earlier, we could have taken preventive measures. Therefore, driven by such motivation, we use advanced machine learning techniques, including Random Forest and Extreme Gradient Boosting, to predict any potential market crashes mainly in the US market. Also, we would like to compare the performance of these methods and examine which model is better for forecasting US stock market crashes. We apply our models on the daily financial market data, which tend to be more responsive with higher reporting frequencies. We consider 75 explanatory variables, including general US stock market indexes, SP 500 sector indexes, as well as market indicators that can be used for the purpose of crisis prediction. Finally, we conclude, with selected classification metrics, that the Extreme Gradient Boosting method performs the best in predicting US stock market crisis events.

Suggested Citation

  • Yue Chen & Xingyi Andrew & Salintip Supasanya, 2024. "CRISIS ALERT:Forecasting Stock Market Crisis Events Using Machine Learning Methods," Papers 2401.06172, arXiv.org.
  • Handle: RePEc:arx:papers:2401.06172
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.06172
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.06172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.