IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2312.05655.html
   My bibliography  Save this paper

A novel scaling approach for unbiased adjustment of risk estimators

Author

Listed:
  • Marcin Pitera
  • Thorsten Schmidt
  • {L}ukasz Stettner

Abstract

The assessment of risk based on historical data faces many challenges, in particular due to the limited amount of available data, lack of stationarity, and heavy tails. While estimation on a short-term horizon for less extreme percentiles tends to be reasonably accurate, extending it to longer time horizons or extreme percentiles poses significant difficulties. The application of theoretical risk scaling laws to address this issue has been extensively explored in the literature. This paper presents a novel approach to scaling a given risk estimator, ensuring that the estimated capital reserve is robust and conservatively estimates the risk. We develop a simple statistical framework that allows efficient risk scaling and has a direct link to backtesting performance. Our method allows time scaling beyond the conventional square-root-of-time rule, enables risk transfers, such as those involved in economic capital allocation, and could be used for unbiased risk estimation in small sample settings. To demonstrate the effectiveness of our approach, we provide various examples related to the estimation of value-at-risk and expected shortfall together with a short empirical study analysing the impact of our method.

Suggested Citation

  • Marcin Pitera & Thorsten Schmidt & {L}ukasz Stettner, 2023. "A novel scaling approach for unbiased adjustment of risk estimators," Papers 2312.05655, arXiv.org.
  • Handle: RePEc:arx:papers:2312.05655
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2312.05655
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2312.05655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.