Author
Listed:
- Foozhan Ataiefard
- Hadi Hemmati
Abstract
In recent years, deep reinforcement learning (Deep RL) has been successfully implemented as a smart agent in many systems such as complex games, self-driving cars, and chat-bots. One of the interesting use cases of Deep RL is its application as an automated stock trading agent. In general, any automated trading agent is prone to manipulations by adversaries in the trading environment. Thus studying their robustness is vital for their success in practice. However, typical mechanism to study RL robustness, which is based on white-box gradient-based adversarial sample generation techniques (like FGSM), is obsolete for this use case, since the models are protected behind secure international exchange APIs, such as NASDAQ. In this research, we demonstrate that a "gray-box" approach for attacking a Deep RL-based trading agent is possible by trading in the same stock market, with no extra access to the trading agent. In our proposed approach, an adversary agent uses a hybrid Deep Neural Network as its policy consisting of Convolutional layers and fully-connected layers. On average, over three simulated trading market configurations, the adversary policy proposed in this research is able to reduce the reward values by 214.17%, which results in reducing the potential profits of the baseline by 139.4%, ensemble method by 93.7%, and an automated trading software developed by our industrial partner by 85.5%, while consuming significantly less budget than the victims (427.77%, 187.16%, and 66.97%, respectively).
Suggested Citation
Foozhan Ataiefard & Hadi Hemmati, 2023.
"Gray-box Adversarial Attack of Deep Reinforcement Learning-based Trading Agents,"
Papers
2309.14615, arXiv.org.
Handle:
RePEc:arx:papers:2309.14615
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.14615. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.