Author
Listed:
- Ishan S. Khare
- Tarun K. Martheswaran
- Akshana Dassanaike-Perera
Abstract
This work seeks to answer key research questions regarding the viability of reinforcement learning over the S&P 500 index. The on-policy techniques of Value Iteration (VI) and State-action-reward-state-action (SARSA) are implemented along with the off-policy technique of Q-Learning. The models are trained and tested on a dataset comprising multiple years of stock market data from 2000-2023. The analysis presents the results and findings from training and testing the models using two different time periods: one including the COVID-19 pandemic years and one excluding them. The results indicate that including market data from the COVID-19 period in the training dataset leads to superior performance compared to the baseline strategies. During testing, the on-policy approaches (VI and SARSA) outperform Q-learning, highlighting the influence of bias-variance tradeoff and the generalization capabilities of simpler policies. However, it is noted that the performance of Q-learning may vary depending on the stability of future market conditions. Future work is suggested, including experiments with updated Q-learning policies during testing and trading diverse individual stocks. Additionally, the exploration of alternative economic indicators for training the models is proposed.
Suggested Citation
Ishan S. Khare & Tarun K. Martheswaran & Akshana Dassanaike-Perera, 2023.
"Evaluation of Reinforcement Learning Techniques for Trading on a Diverse Portfolio,"
Papers
2309.03202, arXiv.org, revised Feb 2024.
Handle:
RePEc:arx:papers:2309.03202
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.03202. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.