IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.06682.html
   My bibliography  Save this paper

Parametric Differential Machine Learning for Pricing and Calibration

Author

Listed:
  • Arun Kumar Polala
  • Bernhard Hientzsch

Abstract

Differential machine learning (DML) is a recently proposed technique that uses samplewise state derivatives to regularize least square fits to learn conditional expectations of functionals of stochastic processes as functions of state variables. Exploiting the derivative information leads to fewer samples than a vanilla ML approach for the same level of precision. This paper extends the methodology to parametric problems where the processes and functionals also depend on model and contract parameters, respectively. In addition, we propose adaptive parameter sampling to improve relative accuracy when the functionals have different magnitudes for different parameter sets. For calibration, we construct pricing surrogates for calibration instruments and optimize over them globally. We discuss strategies for robust calibration. We demonstrate the usefulness of our methodology on one-factor Cheyette models with benchmark rate volatility specification with an extra stochastic volatility factor on (two-curve) caplet prices at different strikes and maturities, first for parametric pricing, and then by calibrating to a given caplet volatility surface. To allow convenient and efficient simulation of processes and functionals and in particular the corresponding computation of samplewise derivatives, we propose to specify the processes and functionals in a low-code way close to mathematical notation which is then used to generate efficient computation of the functionals and derivatives in TensorFlow.

Suggested Citation

  • Arun Kumar Polala & Bernhard Hientzsch, 2023. "Parametric Differential Machine Learning for Pricing and Calibration," Papers 2302.06682, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2302.06682
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.06682
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orcan Ogetbil & Bernhard Hientzsch, 2022. "A Flexible Commodity Skew Model with Maturity Effects," Papers 2212.07972, arXiv.org.
    2. Orcan Ogetbil & Narayan Ganesan & Bernhard Hientzsch, 2020. "Calibrating Local Volatility Models with Stochastic Drift and Diffusion," Papers 2009.14764, arXiv.org, revised May 2023.
    3. Orcan ÖGetbil & Narayan Ganesan & Bernhard Hientzsch, 2022. "Calibrating Local Volatility Models With Stochastic Drift And Diffusion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 25(02), pages 1-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard Hientzsch, 2023. "Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging," Papers 2401.08600, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sangkwon & Kim, Junseok, 2021. "Robust and accurate construction of the local volatility surface using the Black–Scholes equation," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Orcan Ogetbil & Bernhard Hientzsch, 2022. "A Flexible Commodity Skew Model with Maturity Effects," Papers 2212.07972, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.06682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.