IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.13001.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

The application of techniques derived from artificial intelligence to the prediction of the solvency of bank customers: case of the application of the cart type decision tree (dt)

Author

Listed:
  • Karim Amzile
  • Rajaa Amzile

Abstract

In this study we applied the CART-type Decision Tree (DT-CART) method derived from artificial intelligence technique to the prediction of the solvency of bank customers, for this we used historical data of bank customers. However we have adopted the process of Data Mining techniques, for this purpose we started with a data preprocessing in which we clean the data and we deleted all rows with outliers or missing values as well as rows with empty columns, then we fixed the variable to be explained (dependent or Target) and we also thought to eliminate all explanatory (independent) variables that are not significant using univariate analysis as well as the correlation matrix, then we applied our CART decision tree method using the SPSS tool. After completing our process of building our model (AD-CART), we started the process of evaluating and testing the performance of our model, by which we found that the accuracy and precision of our model is 71%, so we calculated the error ratios, and we found that the error rate equal to 29%, this allowed us to conclude that our model at a fairly good level in terms of precision, predictability and very precisely in predicting the solvency of our banking customers.

Suggested Citation

  • Karim Amzile & Rajaa Amzile, 2022. "The application of techniques derived from artificial intelligence to the prediction of the solvency of bank customers: case of the application of the cart type decision tree (dt)," Papers 2203.13001, arXiv.org.
  • Handle: RePEc:arx:papers:2203.13001
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.13001
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.13001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.