IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.10918.html
   My bibliography  Save this paper

Honour Thesis: A Joint Value at Risk and Expected Shortfall Combination Framework and its Applications in the Cryptocurrency Market

Author

Listed:
  • Zhengkun Li

Abstract

Value at risk and expected shortfall are increasingly popular tail risk measures in the financial risk management field. Both academia and financial institutions are working to improve tail risk forecasts in order to meet the requirements of the Basel Capital Accord; it states that one purpose of risk management and measuring risk accuracy is, since extreme movements cannot always be avoided, financial institutions can prepare for these extreme returns by capital allocation, and putting aside the appropriate amount of capital so as to avoid default in times of extreme price or index movements. Forecast combination has drawn much attention, as a combined forecast can outperform the individual forecasts under certain conditions. We propose two methodology, one is a semiparametric combination framework that can jointly produce combined value at risk and expected shortfall forecasts, another one is a parametric regression framework named as Quantile-ES regression that can produce combined expected shortfall forecasts. The favourability of the semiparametric combination framework has been presented via an empirical study - application in cryptocurrency markets with high-frequency data where the necessity of risk management application increases as the cryptocurrency market becomes more popular and mature. Additionally, the general framework of the parametric Quantile-ES regression has been presented via a simulation study, whereas it still need to be improved in the future. The contributions of this work include but are not limited to the enabling of the combination of expected shortfall forecasts and the application of risk management procedures in the cryptocurrency market with high-frequency data.

Suggested Citation

  • Zhengkun Li, 2022. "Honour Thesis: A Joint Value at Risk and Expected Shortfall Combination Framework and its Applications in the Cryptocurrency Market," Papers 2202.10918, arXiv.org.
  • Handle: RePEc:arx:papers:2202.10918
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.10918
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.10918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.