IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.14247.html
   My bibliography  Save this paper

Importance sampling for option pricing with feedforward neural networks

Author

Listed:
  • Aleksandar Arandjelovi'c
  • Thorsten Rheinlander
  • Pavel V. Shevchenko

Abstract

We study the problem of reducing the variance of Monte Carlo estimators through performing suitable changes of the sampling measure which are induced by feedforward neural networks. To this end, building on the concept of vector stochastic integration, we characterize the Cameron-Martin spaces of a large class of Gaussian measures which are induced by vector-valued continuous local martingales with deterministic covariation. We prove that feedforward neural networks enjoy, up to an isometry, the universal approximation property in these topological spaces. We then prove that sampling measures which are generated by feedforward neural networks can approximate the optimal sampling measure arbitrarily well. We conclude with a comprehensive numerical study pricing path-dependent European options for asset price models that incorporate factors such as changing business activity, knock-out barriers, dynamic correlations, and high-dimensional baskets.

Suggested Citation

  • Aleksandar Arandjelovi'c & Thorsten Rheinlander & Pavel V. Shevchenko, 2021. "Importance sampling for option pricing with feedforward neural networks," Papers 2112.14247, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2112.14247
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.14247
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baldi, P. & Ben Arous, G. & Kerkyacharian, G., 1992. "Large deviations and the Strassen theorem in Hölder norm," Stochastic Processes and their Applications, Elsevier, vol. 42(1), pages 171-180, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.
    2. Hu, Yi-Jun, 1997. "A large deviation principle for small perturbations of random evolution equations in Hölder norm," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 83-99, May.
    3. Norvaisa, R., 1995. "The Strassen law of the iterated logarithm in Banach function spaces," Statistics & Probability Letters, Elsevier, vol. 25(1), pages 1-8, October.
    4. Archil Gulisashvili, 2017. "Large deviation principle for Volterra type fractional stochastic volatility models," Papers 1710.10711, arXiv.org, revised Aug 2018.
    5. Liu, Yonghong & Li, Luoqing & Wan, Chenggao, 2009. "The rate of convergence for increments of a Brownian motion in Hölder norm," Statistics & Probability Letters, Elsevier, vol. 79(12), pages 1463-1472, June.
    6. Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.14247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.