IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.11016.html
   My bibliography  Save this paper

Quantum algorithms for numerical differentiation of expected values with respect to parameters

Author

Listed:
  • Koichi Miyamoto

Abstract

The quantum algorithms for Monte Carlo integration (QMCI), which are based on quantum amplitude estimation (QAE), speed up expected value calculation compared with classical counterparts, and have been widely investigated along with their applications to industrial problems such as financial derivative pricing. In this paper, we consider an expected value of a function of a stochastic variable and a real-valued parameter, and how to calculate derivatives of the expectation with respect to the parameter. This problem is related to calculating sensitivities of financial derivatives, and so of industrial importance. Based on QMCI and the general-order central difference formula for numerical differentiation, we propose two quantum methods for this problem, and evaluate their complexities. The first one, which we call the naive iteration method, simply calculates the formula by iterative computations and additions of the terms in it, and then estimates its expected value by QAE. The second one, which we name the sum-in-QAE method, performs the summation of the terms at the same time as the sum over the possible values of the stochastic variable in a single QAE. We see that, depending on the smoothness of the function and the number of qubits available, either of two methods is better than the other. In particular, when the function is nonsmooth or we want to save the qubit number, the sum-in-QAE method can be advantageous.

Suggested Citation

  • Koichi Miyamoto, 2021. "Quantum algorithms for numerical differentiation of expected values with respect to parameters," Papers 2111.11016, arXiv.org.
  • Handle: RePEc:arx:papers:2111.11016
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.11016
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.11016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.