IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.10065.html
   My bibliography  Save this paper

Previs\~ao dos pre\c{c}os de abertura, m\'inima e m\'axima de \'indices de mercados financeiros usando a associa\c{c}\~ao de redes neurais LSTM

Author

Listed:
  • Gabriel de Oliveira Guedes Nogueira
  • Marcel Otoboni de Lima

Abstract

In order to make good investment decisions, it is vitally important for an investor to know how to make good analysis of financial time series. Within this context, studies on the forecast of the values and trends of stock prices have become more relevant. Currently, there are different approaches to dealing with the task. The two main ones are the historical analysis of stock prices and technical indicators and the analysis of sentiments in news, blogs and tweets about the market. Some of the most used statistical and artificial intelligence techniques are genetic algorithms, Support Vector Machines (SVM) and different architectures of artificial neural networks. This work proposes the improvement of a model based on the association of three distinct LSTM neural networks, each acting in parallel to predict the opening, minimum and maximum prices of stock exchange indices on the day following the analysis. The dataset is composed of historical data from more than 10 indices from the world's largest stock exchanges. The results demonstrate that the model is able to predict trends and stock prices with reasonable accuracy.

Suggested Citation

  • Gabriel de Oliveira Guedes Nogueira & Marcel Otoboni de Lima, 2021. "Previs\~ao dos pre\c{c}os de abertura, m\'inima e m\'axima de \'indices de mercados financeiros usando a associa\c{c}\~ao de redes neurais LSTM," Papers 2108.10065, arXiv.org.
  • Handle: RePEc:arx:papers:2108.10065
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.10065
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.10065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.