IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.01535.html
   My bibliography  Save this paper

Weighted Accuracy Algorithmic Approach In Counteracting Fake News And Disinformation

Author

Listed:
  • Kwadwo Osei Bonsu

Abstract

As the world is becoming more dependent on the internet for information exchange, some overzealous journalists, hackers, bloggers, individuals and organizations tend to abuse the gift of free information environment by polluting it with fake news, disinformation and pretentious content for their own agenda. Hence, there is the need to address the issue of fake news and disinformation with utmost seriousness. This paper proposes a methodology for fake news detection and reporting through a constraint mechanism that utilizes the combined weighted accuracies of four machine learning algorithms.

Suggested Citation

  • Kwadwo Osei Bonsu, 2020. "Weighted Accuracy Algorithmic Approach In Counteracting Fake News And Disinformation," Papers 2008.01535, arXiv.org, revised Aug 2020.
  • Handle: RePEc:arx:papers:2008.01535
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.01535
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.01535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.