IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1909.12904.html
   My bibliography  Save this paper

Quantum Annealing Algorithm for Expected Shortfall based Dynamic Asset Allocation

Author

Listed:
  • Samudra Dasgupta
  • Arnab Banerjee

Abstract

The 2008 mortgage crisis is an example of an extreme event. Extreme value theory tries to estimate such tail risks. Modern finance practitioners prefer Expected Shortfall based risk metrics (which capture tail risk) over traditional approaches like volatility or even Value-at-Risk. This paper provides a quantum annealing algorithm in QUBO form for a dynamic asset allocation problem using expected shortfall constraint. It was motivated by the need to refine the current quantum algorithms for Markowitz type problems which are academically interesting but not useful for practitioners. The algorithm is dynamic and the risk target emerges naturally from the market volatility. Moreover, it avoids complicated statistics like generalized pareto distribution. It translates the problem into qubit form suitable for implementation by a quantum annealer like D-Wave. Such QUBO algorithms are expected to be solved faster using quantum annealing systems than any classical algorithm using classical computer (but yet to be demonstrated at scale).

Suggested Citation

  • Samudra Dasgupta & Arnab Banerjee, 2019. "Quantum Annealing Algorithm for Expected Shortfall based Dynamic Asset Allocation," Papers 1909.12904, arXiv.org, revised Sep 2020.
  • Handle: RePEc:arx:papers:1909.12904
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1909.12904
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.12904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.