IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.09474.html
   My bibliography  Save this paper

Machine Learning for Pricing American Options in High-Dimensional Markovian and non-Markovian models

Author

Listed:
  • Ludovic Gouden`ege
  • Andrea Molent
  • Antonino Zanette

Abstract

In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black-Scholes dynamics. The proposed techniques, called GPR Tree (GRP-Tree) and GPR Exact Integration (GPR-EI), are both based on Machine Learning, exploited together with binomial trees or with a closed formula for integration. Moreover, these two methods solve the backward dynamic programming problem considering a Bermudan approximation of the American option. On the exercise dates, the value of the option is first computed as the maximum between the exercise value and the continuation value and then approximated by means of Gaussian Process Regression. The two methods mainly differ in the approach used to compute the continuation value: a single step of binomial tree or integration according to the probability density of the process. Numerical results show that these two methods are accurate and reliable in handling American options on very large baskets of assets. Moreover we also consider the rough Bergomi model, which provides stochastic volatility with memory. Despite this model is only bidimensional, the whole history of the process impacts on the price, and handling all this information is not obvious at all. To this aim, we present how to adapt the GPR-Tree and GPR-EI methods and we focus on pricing American options in this non-Markovian framework.

Suggested Citation

  • Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Machine Learning for Pricing American Options in High-Dimensional Markovian and non-Markovian models," Papers 1905.09474, arXiv.org, revised Jun 2019.
  • Handle: RePEc:arx:papers:1905.09474
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.09474
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    2. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    3. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.09474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.