IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1311.1924.html
   My bibliography  Save this paper

Community detection for correlation matrices

Author

Listed:
  • Mel MacMahon
  • Diego Garlaschelli

Abstract

A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that tends to be intrinsically biased due to its inconsistency with the null hypotheses underlying the existing algorithms. Here we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anti-correlated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested sub-communities with `hard' cores and `soft' peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy, detect `soft stocks' that alternate between communities, and discuss implications for portfolio optimization and risk management.

Suggested Citation

  • Mel MacMahon & Diego Garlaschelli, 2013. "Community detection for correlation matrices," Papers 1311.1924, arXiv.org, revised Oct 2014.
  • Handle: RePEc:arx:papers:1311.1924
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1311.1924
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marya Bazzi & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2014. "Community detection in temporal multilayer networks, with an application to correlation networks," Papers 1501.00040, arXiv.org, revised Dec 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1311.1924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.