IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Fast Convergence of Regress-Later Estimates in Least Squares Monte Carlo

Listed author(s):
  • Eric Beutner
  • Janina Schweizer
  • Antoon Pelsser

Many problems in financial engineering involve the estimation of unknown conditional expectations across a time interval. Often Least Squares Monte Carlo techniques are used for the estimation. One method that can be combined with Least Squares Monte Carlo is the "Regress-Later" method. Unlike conventional methods where the value function is regressed on a set of basis functions valued at the beginning of the interval, the "Regress-Later" method regresses the value function on a set of basis functions valued at the end of the interval. The conditional expectation across the interval is then computed exactly for each basis function. We provide sufficient conditions under which we derive the convergence rate of Regress-Later estimators. Importantly, our results hold on non-compact sets. We show that the Regress-Later method is capable of converging significantly faster than conventional methods and provide an explicit example. Achieving faster convergence speed provides a strong motivation for using Regress-Later methods in estimating conditional expectations across time.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number 1309.5274.

in new window

Date of creation: Sep 2013
Date of revision: Apr 2014
Handle: RePEc:arx:papers:1309.5274
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1309.5274. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.